[Stable] Power analysis for TOST for an F-test

power_eq_f(alpha = 0.05, df1, df2, eqbound)

Arguments

alpha

alpha used for the test (e.g., 0.05)

df1

Degrees of freedom for the numerator

df2

Degrees of freedom for the denominator

eqbound

Equivalence bound for the partial eta-squared

Value

Object of class '"power.htest"

References

Campbell, H., & Lakens, D. (2021). Can we disregard the whole model? Omnibus non‐inferiority testing for R2 in multi‐variable linear regression and in ANOVA. British Journal of Mathematical and Statistical Psychology, 74(1), 64-89. doi: 10.1111/bmsp.12201

See also

Other power: power_t_TOST(), power_z_cor()

Examples

## Statistical power for alpha = 0.05, 3 groups, n = 80 per group, equivalence bound of
## partial eta squared = 0.01, assuming true effect = 0.
## df1 = number of groups - 1 = 3 - 1 = 2.
## df2 = Total N - number of groups = 240 - 3 = 237.
power_eq_f(alpha=0.05, df1=3, df2 = 237, eqbound = 0.01)
#> Note: equ_anova only validated for one-way ANOVA; use with caution
#> 
#>      Power for Non-Inferiority F-test 
#> 
#>             df1 = 3
#>             df2 = 237
#>         eqbound = 0.01
#>       sig.level = 0.05
#>           power = 0.1417451
#>