Skip to contents

[Stable]

Performs equivalence or minimal effect testing on the partial eta-squared (pes) value from ANOVA results to determine if effects are practically equivalent to zero or meaningfully different from zero.

Usage

equ_anova(object, eqbound, MET = FALSE, alpha = 0.05)

Arguments

object

An object returned by either Anova, aov, or afex_aov.

eqbound

Equivalence bound for the partial eta-squared. This value represents the smallest effect size considered meaningful or practically significant.

MET

Logical indicator to perform a minimal effect test rather than equivalence test (default is FALSE). When TRUE, the alternative hypothesis becomes that the effect is larger than the equivalence bound.

alpha

Alpha level used for the test (default = 0.05).

Value

Returns a data frame containing the ANOVA results with equivalence tests added. The following columns are included in the table:

  • effect: Name of the effect.

  • df1: Degrees of Freedom in the numerator (i.e., DF effect).

  • df2: Degrees of Freedom in the denominator (i.e., DF error).

  • F.value: F-value.

  • p.null: p-value for the traditional null hypothesis test (probability of the data given the null hypothesis).

  • pes: Partial eta-squared measure of effect size.

  • eqbound: Equivalence bound used for testing.

  • p.equ: p-value for the equivalence or minimal effect test.

Details

This function tests whether ANOVA effects are practically equivalent to zero (when MET = FALSE) or meaningfully different from zero (when MET = TRUE) using the approach described by Campbell & Lakens (2021).

The function works by:

  1. Extracting ANOVA results from the input object

  2. Converting the equivalence bound for partial eta-squared to a non-centrality parameter

  3. Performing an equivalence test or minimal effect test for each effect in the ANOVA

For equivalence tests (MET = FALSE), a significant result (p < alpha) indicates that the effect is statistically equivalent to zero (smaller than the equivalence bound).

For minimal effect tests (MET = TRUE), a significant result (p < alpha) indicates that the effect is meaningfully different from zero (larger than the equivalence bound).

For details on the calculations in this function see vignette("the_ftestTOSTER").

References

Campbell, H., & Lakens, D. (2021). Can we disregard the whole model? Omnibus non‐inferiority testing for R2 in multi‐variable linear regression and in ANOVA. British Journal of Mathematical and Statistical Psychology, 74(1), 64-89. doi: 10.1111/bmsp.12201

See also

Other f-test: equ_ftest()

Examples

# One-way ANOVA
data(iris)
anova_result <- aov(Sepal.Length ~ Species, data = iris)

# Equivalence test with bound of 0.1
equ_anova(anova_result, eqbound = 0.1)
#>        effect df1 df2  F.value       p.null       pes eqbound p.equ
#> 1 Species       2 147 119.2645 1.669669e-31 0.6187057     0.1     1

# Minimal effect test with bound of 0.1
equ_anova(anova_result, eqbound = 0.1, MET = TRUE)
#>        effect df1 df2  F.value       p.null       pes eqbound        p.equ
#> 1 Species       2 147 119.2645 1.669669e-31 0.6187057     0.1 3.563826e-10

# Two-way ANOVA with lower equivalence bound
anova_result2 <- aov(Sepal.Length ~ Species * Petal.Width, data = iris)
equ_anova(anova_result2, eqbound = 0.05)
#>                effect df1 df2    F.value       p.null        pes eqbound
#> 1 Species               2 144 137.828968 3.577896e-34 0.65686339    0.05
#> 2 Petal.Width           1 144  22.571323 4.848845e-06 0.13550545    0.05
#> 3 Species:Petal.Width   2 144   1.655197 1.946683e-01 0.02247224    0.05
#>       p.equ
#> 1 1.0000000
#> 2 0.9711723
#> 3 0.1175566