Equivalence Test for ANOVA Results
equ_anova.Rd
Performs equivalence or minimal effect testing on the partial eta-squared (pes) value from ANOVA results to determine if effects are practically equivalent to zero or meaningfully different from zero.
Arguments
- object
An object returned by either
Anova
,aov
, orafex_aov
.- eqbound
Equivalence bound for the partial eta-squared. This value represents the smallest effect size considered meaningful or practically significant.
- MET
Logical indicator to perform a minimal effect test rather than equivalence test (default is FALSE). When TRUE, the alternative hypothesis becomes that the effect is larger than the equivalence bound.
- alpha
Alpha level used for the test (default = 0.05).
Value
Returns a data frame containing the ANOVA results with equivalence tests added. The following columns are included in the table:
effect: Name of the effect.
df1: Degrees of Freedom in the numerator (i.e., DF effect).
df2: Degrees of Freedom in the denominator (i.e., DF error).
F.value: F-value.
p.null: p-value for the traditional null hypothesis test (probability of the data given the null hypothesis).
pes: Partial eta-squared measure of effect size.
eqbound: Equivalence bound used for testing.
p.equ: p-value for the equivalence or minimal effect test.
Details
This function tests whether ANOVA effects are practically equivalent to zero (when
MET = FALSE
) or meaningfully different from zero (when MET = TRUE
) using the approach
described by Campbell & Lakens (2021).
The function works by:
Extracting ANOVA results from the input object
Converting the equivalence bound for partial eta-squared to a non-centrality parameter
Performing an equivalence test or minimal effect test for each effect in the ANOVA
For equivalence tests (MET = FALSE
), a significant result (p < alpha) indicates that the
effect is statistically equivalent to zero (smaller than the equivalence bound).
For minimal effect tests (MET = TRUE
), a significant result (p < alpha) indicates that
the effect is meaningfully different from zero (larger than the equivalence bound).
For details on the calculations in this function see vignette("the_ftestTOSTER")
.
References
Campbell, H., & Lakens, D. (2021). Can we disregard the whole model? Omnibus non‐inferiority testing for R2 in multi‐variable linear regression and in ANOVA. British Journal of Mathematical and Statistical Psychology, 74(1), 64-89. doi: 10.1111/bmsp.12201
See also
Other f-test:
equ_ftest()
Examples
# One-way ANOVA
data(iris)
anova_result <- aov(Sepal.Length ~ Species, data = iris)
# Equivalence test with bound of 0.1
equ_anova(anova_result, eqbound = 0.1)
#> effect df1 df2 F.value p.null pes eqbound p.equ
#> 1 Species 2 147 119.2645 1.669669e-31 0.6187057 0.1 1
# Minimal effect test with bound of 0.1
equ_anova(anova_result, eqbound = 0.1, MET = TRUE)
#> effect df1 df2 F.value p.null pes eqbound p.equ
#> 1 Species 2 147 119.2645 1.669669e-31 0.6187057 0.1 3.563826e-10
# Two-way ANOVA with lower equivalence bound
anova_result2 <- aov(Sepal.Length ~ Species * Petal.Width, data = iris)
equ_anova(anova_result2, eqbound = 0.05)
#> effect df1 df2 F.value p.null pes eqbound
#> 1 Species 2 144 137.828968 3.577896e-34 0.65686339 0.05
#> 2 Petal.Width 1 144 22.571323 4.848845e-06 0.13550545 0.05
#> 3 Species:Petal.Width 2 144 1.655197 1.946683e-01 0.02247224 0.05
#> p.equ
#> 1 1.0000000
#> 2 0.9711723
#> 3 0.1175566