Convert TOSTER Results to Class 'htest'
as_htest.Rd
Converts a TOSTER result object of class 'TOSTt' or 'TOSTnp' to a list of class 'htest', making it compatible with standard R hypothesis testing functions and workflows.
Value
Returns a list of class 'htest' containing the following components:
statistic: The value of the test statistic (t for TOSTt, WMW for TOSTnp).
parameter: The degrees of freedom of the test statistic (df for TOSTt, NULL for TOSTnp).
p.value: The p-value of the test.
estimate: Estimated difference in raw units.
null.value: Equivalence bounds.
alternative: A character string describing the alternative hypothesis ("equivalence" or "minimal.effect").
method: A character string indicating the performed test.
data.name: A character string giving the names of the data.
conf.int: The confidence interval of the difference.
Details
This function allows you to convert the specialized TOSTER result objects to the standard
'htest' class used by most R hypothesis testing functions (e.g., t.test()
, cor.test()
).
This enables:
Integration with other statistical functions that expect 'htest' objects
Using helper functions like
df_htest()
ordescribe_htest()
Consistent reporting and interpretation of results
See also
Other htest:
htest-helpers
,
simple_htest()
Examples
# Example 1: Converting TOST t-test results to htest
res1 <- t_TOST(formula = extra ~ group, data = sleep, eqb = .5, smd_ci = "goulet")
htest_result <- as_htest(res1)
htest_result # Print the htest object
#>
#> Welch Two Sample t-test
#>
#> data: extra by group
#> t = -1.2719, df = 17.776, p-value = 0.8901
#> alternative hypothesis: equivalence
#> null values:
#> mean difference mean difference
#> -0.5 0.5
#> 90 percent confidence interval:
#> -3.0533815 -0.1066185
#> sample estimates:
#> mean difference
#> -1.58
#>
# Example 2: Using the converted result with htest helpers
describe_htest(htest_result)
#> [1] "The Welch Two Sample t-test is not statistically significant (t(17.776) = -1.27, p = 0.89, mean difference = -1.58, 90% C.I.[-3.05, -0.107]) at a 0.05 alpha-level. The null hypothesis cannot be rejected. At the desired error rate, it cannot be stated that the true mean difference is between -0.5 and 0.5."
df_htest(htest_result)
#> method t df p.value mean difference lower.ci
#> 1 Welch Two Sample t-test -1.271948 17.77647 0.89011 -1.58 -3.053381
#> upper.ci conf.level alternative null1 null2
#> 1 -0.1066185 0.9 equivalence -0.5 0.5
# Example 3: Converting a non-parametric TOST result
res2 <- wilcox_TOST(extra ~ group, data = sleep, eqb = 2)
as_htest(res2)
#>
#> Wilcoxon rank sum test with continuity correction
#>
#> data: extra by group
#> WMW = 59, p-value = 0.2601
#> alternative hypothesis: equivalence
#> null values:
#> location shift location shift
#> -2 2
#> 90 percent confidence interval:
#> -3.39996507 -0.09995341
#> sample estimates:
#> location shift
#> -1.346388
#>