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Researchers often rely on analysis of variance (ANOVA) when they report results of experi-
ments. To ensure a study is adequately powered to yield informative results when performing
an ANOVA, researchers can perform an a-priori power analysis. However, power analysis for
factorial ANOVA designs is often a challenge. Current software solutions do not allow power
analyses for complex designs with several within-subject factors. Moreover, power analyses
often need partial eta-squared or Cohen’s f as input, but these effect sizes are not intuitive and do
not generalize to different experimental designs. We have created the R package Superpower and
online Shiny apps to enable researchers without extensive programming experience to perform
simulation-based power analysis for ANOVA designs of up to three within- or between-subject
factors. Predicted effects are entered by specifying means, standard deviations, and for within-
subject factors the correlations. The simulation provides the statistical power for all ANOVA
main effects, interactions, and individual comparisons. The software can plot power across a
range of sample sizes, can control for multiple comparisons, and can compute power when
the homogeneity or sphericity assumptions are violated. This tutorial will demonstrate how to
perform a-priori power analysis to design informative studies for main effects, interactions, and
individual comparisons, and highlights important factors that determine the statistical power for
factorial ANOVA designs.
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When a researcher aims to test hypotheses with an analysis
of variance (ANOVA) the sample size of the study should
be justified based on the statistical power of the test. The
statistical power of a test is the probability of rejecting the
null-hypothesis, given a specified effect size, alpha level, and
sample size. When the statistical power of a test is low, there
is a high probability of a type 2 error, or concluding there is
no effect when a true effect exists in the population of interest.

Several excellent resources exist that explain power analy-
ses, including books (Aberson, 2019; Cohen, 1988), general
reviews (Maxwell, Kelley, & Rausch, 2008), and practical
primers (Brysbaert, 2019; Perugini, Gallucci, & Costantini,
2018). Whereas power analyses for individual comparisons
are relatively easy to perform, power analyses for factorial
ANOVA designs are a bigger challenge. There is a range of
power analysis software available such as G*Power (Faul,
Erdfelder, Lang, & Buchner, 2007), MorePower (Campbell
& Thompson, 2012), PANGEA (J. Westfall, 2015a), pwr2ppl
(Aberson, 2019), APRIOT (Lang, 2017), PASS, and SAS.
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These tools differ in their focus (e.g., sequential analyses for
APRIOT, linear mixed models for PANGEA), the tests they
provide power analyses for (e.g., allowing violations of the
homogeneity assumption, unequal sample sizes, and power
analysis for ANCOVA designs), and the input they require
(e.g., effect sizes, raw data, or means, standard deviations,
correlations, and sample sizes).1 Despite this wide range of
software options, in our experience researchers often struggle
to perform power analyses for ANOVA designs.

In this manuscript we introduce the Superpower R package
and accompanying Shiny apps that can be used to perform
power analyses for factorial ANOVA designs based on sim-
ulations. We designed Superpower with the goal to be free,
available both as R functions and an online app, and to eas-
ily allow researchers to perform power analyses for a wide
range of ANOVA designs. Compared to G*power, the pwr
R package, and the pwr2ppl R package, Superpower can
compute power for a wider range of designs (e.g., up to 3
factors with 999 levels). Compared to PANGEA, G*power,
and MorePower, we believe the required input is somewhat
more intuitive, as users enter means, standard deviations,
and correlations, instead of effect sizes and variance com-
ponents. A unique feature of Superpower is that it allows

1For a detailed overview of the functionality of different software
packages, see https://osf.io/9mzpn/.

https://osf.io/9mzpn/
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users to easily correct for multiple comparisons in exploratory
ANOVA designs, and that it automatically provides the sta-
tistical power for all main effects, interactions, and simple
comparisons for a specified ANOVA design. The online man-
ual at http://arcaldwell49.github.io/SuperpowerBook provides
detailed examples for power analyses (ranging from One-Way
ANOVA designs to three-way interactions for mixed designs,
MANOVA analyses, and power analyses for when ANOVA
assumptions are violated), as well as examples validating
power analyses in Superpower against existing software. A
current limitation of Superpower is that it cannot compute
power for ANCOVAs or linear mixed models.

Superpower allows researchers to perform simulation-based
power analyses without having extensive programming knowl-
edge. By simulating data for factorial designs with specific
parameters, researchers can gain a better understanding of
the factors that determine the statistical power of an ANOVA,
and learn how to design well-powered experiments. After a
short introduction to statistical power, focusing on the F-test,
we will illustrate through simulations how the power of facto-
rial ANOVA designs depends on the pattern of means across
conditions, the number of factors and levels, the sample size,
and whether you need to control the alpha level for multiple
comparisons.

A basic example

Imagine you perform a study in which participants interact
with an artificial voice assistant who sounds either cheerful or
sad. You measure how much 80 participants in each condition
enjoy interacting with the voice assistant on a line marking
scale (coded continuously from -5 to 5). You observe a mean
of 0 in the sad condition, and a mean of 1 in the cheerful
condition, with an estimated standard deviation of 2. After
submitting your manuscript for publication, reviewers ask you
to add a study with a neutral control condition to examine
whether cheerful voices increase, or sad voices decrease en-
joyment (or both). Depending on what the mean enjoyment
in the neutral condition in the population is, what sample
size would you need to collect for a high powered test of
the expected pattern of means? A collaborator suggests to
switch from a between-subject design to a within-subject
design to collect data more efficiently. What impact will
switching to a within-subject design have on the required
sample size? The effect size observed in the first study is
sometimes referred to as a “medium” effect size based on
the benchmarks by Cohen (1988). Does it make sense to
perform an a-priori power analysis for a “medium” effect size
if we add a third between-subject condition, or switch to a
within-subject ANOVA design? And if you justify the sample
size based on the power for the main effect for the ANOVA,
will the study also have sufficient statistical power for the
independent comparisons between conditions (or vice versa)?

Before we answer these questions, let’s review some of the
basic concepts of statistical power, and examine how power
calculations are typically performed.

Calculating Power for ANOVA Designs

Let’s consider the two condition design described earlier,
where enjoyment is measured when 80 participants per condi-
tion interact with a cheerful or sad voice assistant. We can test
the difference between two means with a t-test or a one-way
ANOVA, and the two tests are mathematically equivalent. Fig-
ure 1 and Figure 2 visualize the distribution of the effect sizes
Cohen’s d (for the t-test) and η2

p (for the F-test) that should
be observed when there is no effect (grey curves) and when
the observed difference between means equals the true effect
(black curves)2. In both figures the light grey areas under the
null-distribution mark the observed effect sizes that would
lead to a Type 1 error (observing a statistically significant
result if the null-hypothesis is true) and the dark grey areas
under the curve mark the observed effect sizes that would lead
to a Type 2 error (observing a non-significant result when
there is a true effect). To perform an a-priori power analysis,
researchers need to specify an effect size for the alternative
hypothesis (for details on effect size calculatons, see Box 1).

A test result is statistically significant when the p-value is
smaller than the alpha level, or when the test statistic (e.g.,
a F-value) is larger than a critical value. For a given sample
size we can also calculate a critical effect size, and a result
is statistically significant if the observed effect size is more
extreme than the critical effect size. Given the sample size
of 80 participants per group, observed effects are statistically
significant when they are larger than d̂ = 0.31 in a t-test, or
η̂2

p = 0.024 for the F-test (see the vertical dashed lines in
Figure 1 and Figure 2). The goal of an a-priori power analysis
is to determine the sample size required to, in the long run,
observe a p-value smaller than the chosen alpha level with a
predetermined probability, given an assumption about the true
population effect size. To calculate the sample size required
to reach a desired statistical power one has to specify the
alternative hypothesis and the alpha level. Based on λ (the
non-centrality parameter, which together with the degrees of
freedom specifies the shape of the expected effect size distri-
bution under a specified alternative hypothesis, illustrated by
the black curves in Figure 1 and 2) we can calculate the area
under the curve that is more extreme than the critical effect
size (i.e., Figure 2 to the right of the critical effect size). Under
the alternative hypothesis that the true population effect size is
d = 0.5 or η2

p = 0.0588, data are collected from 80 participants
in each condition, and an alpha of 0.05 is used, in the long
run 88.16% of the tests will yield an effect size that is larger
than the critical effect size.

2We refer to sample level statistics (indicated with a hat) by de-
fault, and mention when we refer to population parameters instead.

http://arcaldwell49.github.io/SuperpowerBook
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Figure 1. Distribution of Cohen’s d under the null-hypothesis
(grey curve) and alternative hypothesis assuming d = 0.5 in
the population (black curve) given n = 80.
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Figure 2. Distribution of eta-squared under the null-
hypothesis (grey curve) and alternative hypothesis assuming
partial eta-squared = 0.0588 in the population (black curve)
given n = 80.

Power calculations in Superpower

Superpower can be used in R (run:
install.packages("Superpower")) or in online
Shiny apps (see https://arcstats.io/shiny/anova-exact/ and
https://arcstats.io/shiny/anova-power/). The code underlying
the Superpower R package and the Shiny app generates data
for each condition in the design and performs an ANOVA
and t-tests for all comparisons between conditions. The
simulation can be performed based on any design specified
using the ANOVA_design function, the result of which is
stored and passed on to either of the two functions to compute
power. Users specify the design based on the number of
levels for each factor (e.g., 2) and whether the factor is
manipulated within or between participants (by entering a
“w” or a “b”). Superpower can handle up to three factors
(separated by “*”). A 2b design means a single factor with
two groups manipulated between participants, whereas a
2b*2w design is a 2 x 2 mixed ANOVA where the first factor
is manipulated between, and the second within participants.
Users also specify the sample size per condition (n), the
predicted pattern of means across all conditions, the expected

standard deviation, and the correlation between variables (for
within designs). To make it easier to interpret the output users
can specify factor names and names for each factor level (e.g.,
“condition, cheerful, sad”).

Box 1. Formula for effect sizes for ANOVA designs

For two independent groups, the t-statistic can easily
be translated to the F-statistic F = t2. Cohen’s d,
a standardized effect size, is calculated by dividing
the difference between means by the pooled standard
deviation, or

d =
m1 − m2

σp
. (1)

The generalization of Cohen’s d to more than two
groups is Cohen’s f , which is the standard deviation
of the means divided by the standard deviation (Co-
hen, 1988), or:

f =
σm

σ
(2)

where for equal sample sizes,

σm =

√∑k
i=1(mi − m)2

k
. (3)

For two groups Cohen’s f is half as large as Cohen’s
d, or f = 1

2 d. Partial eta-squared, which is often used
as input in power analysis software, can be converted
into Cohen’s f :

f =

√
η2

p

1 − η2
p

(4)

and Cohen’s f can be converted into partial eta-
squared:

η2
p =

√
f 2

f 2 + 1
(5)

Power calculations rely on the noncentrality param-
eter (lambda, λ). In a between-participants one-way
ANOVA lambda is calculated as:

λ = f 2 × N (6)

where f is Cohen’s f and N is the total sample size.

An example of the R code is:

design_result <- ANOVA_design(
design = "2b", n = 80,
mu = c(1, 0), sd = 2,
labelnames = c("condition",

"cheerful", "sad"),
plot = TRUE)

https://arcstats.io/shiny/anova-exact/
https://arcstats.io/shiny/anova-power/
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For a visual confirmation of the input the R function creates a
figure that displays the means and standard deviation (see the
right side of Figure 3). After the design has been specified
there are two ways to calculate the statistical power of an
ANOVA through simulations. The ANOVA_power function
simulates data sets repeatedly based on the specified parame-
ters and calculates the percentage of statistically significant
results. In the code below 1000 simulations are performed,
which should take approximately 15 seconds and yields rea-
sonably accurate results when trying out the power analysis.
For most designs increasing the number of simulations to
10,000, which would take a few minutes to complete, should
give accurate enough results for most practical purposes.

result_monte <- ANOVA_power(design_result,
nsims = 1000)

The ANOVA_exact function simulates a data set that has
exactly the desired properties, performs an ANOVA, and uses
the ANOVA results to compute the statistical power.

result_exact <- ANOVA_exact(design_result)

The first approach is a bit more flexible (e.g., it allows for
sequential corrections for multiple comparisons such as the
Holm procedure), but the second approach is much faster (and
generally recommended). There is often uncertainty about
the values that are required to perform an a-priori power anal-
ysis. The true (population-level) pattern of means, standard
deviations, and correlations is unknown (and the goal of the
study is to learn what this data pattern looks like). It makes
sense to examine power across a range of assumptions, from
more optimistic scenarios, to more conservative estimates. In
many cases researchers should consider collecting a sample
size that guarantees sufficient power for the smallest effect
size of interest, instead of the effect size they expect. For
examples of ways to specify a smallest effect sizes of interest,
see Lakens, Scheel, and Isager (2018). This approach ensures
the study can be informative, even when there is uncertainty
about the true effect size.

If ANOVA_power is used the results from the simulation will
vary each time the simulation is performed (unless a seed is
specified, e.g., ‘set.seed = 2019’). A user should specify the
number of simulations (the more simulations, the more accu-
rate the results are, but the longer the simulation takes), the
alpha level for the tests, and any adjustments for multiple com-
parisons that are required. The output from ANOVA_exact
and ANOVA_power are similar, and provides the statistical
power for the ANOVA and all simple comparisons between
conditions.

Power and Effect sizes for ANOVA tests
power effect_size

anova_condition 88.191 0.06425

Power and Effect sizes for
pairwise comparisons (t-tests)

power effect_size
p_cheerful_sad 88.191 -0.5017

The same results are returned in the online Shiny app, but
here users can also choose a “download PDF report” option
to receive the results as a PDF file that can be saved to be
included as documentation for sample size requirements (e.g.,
preregistration, Registered Reports, or grant applications). An
example of the input in the Shiny app and results are presented
in Figures 3 and 4:

From these results we see that when 100.000 simulations
are performed for our two group between subjects design
with means of 1 and 0, a standard deviation of 2, and 80
participants in each group (for a total of 160 participants),
with a seed set to 2019 (these settings will be used for all
simulation results reported in this manuscript), the statistical
power (based on the percentage of p < α results) is 88.19%
and the average η̂2

p is 0.064. The simulation also provides the
results for the individual comparisons based on t-tests. Since
there are only two groups in this example, the statistical power
for the individual comparison is identical to the ANOVA, but
the expected effect size is given in Cohen’s d̂: -0.50.

Simulating Statistical Power for Different Factorial
Designs

Now that the basic idea behind power analyses in Superpower
is illustrated, we can use it to explore how changes to the
experimental design influence power, and answer some of
the questions our hypothetical researcher is confronted with
when designing a follow-up study. We will first examine what
happens if we add a third, neutral, condition to the design.
Let’s assume a researcher expects the mean enjoyment rating
for the neutral voice condition to fall either perfectly between
the cheerful and sad conditions, or to be equal to the cheerful
condition. The researcher wonders if simply collecting 80
additional participants in the neutral condition (for a total of
240 participants) is enough for a one-way ANOVA to have
sufficient power. The R code to specify the first design is:

design_result_1 <- ANOVA_design(
design = "3b", n = 80,
mu = c(1, 0.5, 0), sd = 2,
labelnames = c("condition",

"cheerful",
"neutral", "sad"))
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Figure 3. Screenshot of ANOVA_power Shiny app.

Figure 4. Screenshot of the results of the power analysis in
the ANOVA_power Shiny app.

The design now has 3 between-participant conditions, and we
can explore what happens if we would collect 80 participants
in each condition.

If we assume the mean falls exactly between the cheerful and
sad conditions, the simulations show the statistical power for
a 3-groups one-way ANOVA F-test is reduced to 81.14%. If
we assume the mean is equal to the cheerful condition, the
power increases to 91.03%. This highlights how different
expected patterns of means translate into different effect sizes,
and thus different levels of statistical power. Compared to the
two group design (where the power was 88.19%), three things
have changed. First, the numerator degrees of freedom has
increased because an additional group is added to the design,
which makes the non-central F-distribution more similar to
the central F-distribution, which reduces the statistical power.
Second, the total sample size is 50% larger after adding 80
participants in the third condition, which increases the statisti-
cal power of the ANOVA. Third, the effect size, Cohen’s f ,
has decreased from 0.25 to either 0.20 if we expect the main
to fall between the other two conditions, or 0.24 if we expect
the mean in the neutral condition to equal the mean in the sad
condition, which reduces the statistical power. The most im-
portant take-home message is that changing an experimental
design can have several opposing effects on the power of a
study, depending of the pattern of means. The exact effect
of these three changes on the statistical power is difficult to
anticipate from one design to the next. This highlights the
importance of thinking about the specific pattern of means
across conditions that a theory predicts when performing an
a-priori power analysis.

Power for individual comparisons

Although an initial goal might be to test the omnibus null hy-
pothesis (i.e., ANOVA), which answers the question whether
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there are any differences among group means, we often want
to know which specific conditions differ from each other.
Thus, an ANOVA is often followed up by individual compar-
isons (whether planned or post-hoc). It is very important that
researchers consider whether their design will have enough
power for any individual comparisons they want to make.
Superpower automatically provides the statistical power for
all individual comparisons that can be performed, so that
researchers can easily check if their design is well-powered
for follow-up tests. By default, the power and effect size
estimates are based on simple t-tests. With expected means
per condition of 0, 0.5, and 1 for the cheerful, neutral, and
sad conditions, statistical power is highest for the comparison
between the cheerful and sad conditions (88.22%). We see
that (except for minor differences due to the fact that simula-
tions will give slightly different results each time they are run)
the power estimate is identical to the two group design. If we
want to compare the cheerful and sad conditions to the neutral
condition, the statistical power is only 35.03% and 34.72%
(the two power estimates differ slightly because the power
estimate is based on simulations, even though the difference
between means of 0.5 between is identical). It is clear that
our design, despite having sufficient power to detect a main
effect, is not well-powered for the individual comparisons we
are interested in.

It is also possible to combine variance estimates from all con-
ditions and calculate the estimated marginal means (Lenth,
2019) when performing individual comparisons by setting
emm = TRUE within the ANOVA_power or ANOVA_exact
functions, or checking this option in the Shiny app. This ap-
proach often has greater statistical power (Maxwell, Delaney,
& Kelley, 2017), depending on whether the assumption of
equal variances (also known as the homogeneity assumption)
is met, which may not be warranted in psychological research
(Delacre, Lakens, & Leys, 2017). The degree to which vi-
olations of the homogeneity assumption affect Type 1 error
rates can be estimated with the ANOVA_power function (see
Assumptions section below). Power analysis for individual
comparisons is relatively straightforward and can easily be
done in all power analysis software, but providing power for
all individual comparisons alongside the ANOVA result by
default hopefully nudges researchers to take into account the
power for follow-up tests.

When performing multiple individual comparisons, we need
to choose the alpha level and ensure the Type 1 error rate
is not inflated. By adjusting for multiple comparisons we
ensure that we do not conclude there is an effect in any of the
individual tests more often than the desired Type 1 error rate.
Several techniques to control error rates exist, of which the
best known is the Bonferroni correction. The Holm procedure
is slightly more powerful than the Bonferroni correction, with-
out requiring additional assumptions (for other approaches,

see Bretz, Hothorn, & Westfall, 2011). Power analyses using
a manually calculated Bonferroni correction can be performed
with the ANOVA_exact function by specifying the adjusted
alpha level, but the sequential Holm approach can only be
performed in the ANOVA_power simulation approach. Be-
cause the adjustment for multiple comparisons lowers the
alpha level, it also lowers the statistical power. For the paired
comparisons we see we have approximately 78% power for
the expected difference between the cheerful and sad condi-
tions after controlling for multiple comparisons with the Holm
procedure (compared to 88% power without correcting for
multiple comparisons), and only 26% power when comparing
cheerful and sad conditions with the neutral condition. As the
number of possible paired comparisons increases, the alpha
level is reduced, and power is reduced, all else equal.

These power analyses reveal the cost (in terms of the statistical
power) of exploring across all possible paired comparisons
while controlling error rates. To maintain an adequate level of
power after lowering the alpha level to control the Type 1 error
rate after multiple comparisons the sample size should be in-
creased. In a one-way ANOVA multiple comparisons are only
an issue for the follow-up comparison, but in a 2x2x2 design,
an ANOVA will give the test results for three main effects,
three two-way interactions, and one three-way interaction.
Because seven statistical tests are performed, the probability
of making at least one Type 1 error in a single exploratory
2x2x2 ANOVA is 1− (0.95)7 = 30%. It is therefore important
to control error rates in exploratory ANOVA’s (Cramer et al.,
2016). If a researcher is only interested in specific tests it is
advisable to preregister and test only these comparisons in-
stead of correcting the alpha level for all possible comparisons
(Haans, 2018).

Power for Within-Subject Designs

What happens if we would perform the second study as a
within-participants design? Instead of collecting three groups
of participants, we only collect one group, and let this group
evaluate the cheerful, neutral, and sad voice assistants. If we
want to examine the power for a within design we need to
enter our best estimate for the true population value of the
correlation between dependent measurements. Ideally this
value is determined based on previous studies, and when there
is substantial uncertainty about the true population value it
often makes sense to explore a range of plausible correlations.
Let’s assume our best estimate of the correlation between
enjoyment ratings in a within-subject design is ρ = 0.5. The
ANOVA_design function below specifies this design. Note
the design has changed from 3b (a one factor between de-
sign with three levels) to 3w (a one factor within design with
three levels) and the correlation parameter r = 0.5 is added,
which specifies the expected correlation between dependent
variables in the population.
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design_within <- ANOVA_design(
design = "3w", n = 80, mu = c(1, 0.5, 0),
sd = 2, r = 0.5,
labelnames = c("condition",

"cheerful",
"neutral", "sad"))

A rough but useful approximation of the sample size needed
in a within-subject design (NW ), relative to the sample needed
in between-design (NB), is (from Maxwell & Delaney, 2004,
p. 562, formula 47):

NW =
NB(1 − ρ)

a
(7)

Here a is the number of within-participant levels, ρ is the
correlation between measurements in the population. From
this formula we see that switching from a between to a within
design reduces the required sample size simply because each
participant contributes data to each condition, even if the
correlation between measurements is 0. In our example a
within design would require three times less participants as
a between subjects design with three conditions, but would
achieve practically the same statistical power even when the
three measurements are not correlated. Furthermore, a pos-
itive correlation reduces the magnitude of the error term by
removing systematic individual differences, and thereby in-
creases the statistical power.

We can perform the simulation-based power analysis with the
ANOVA_power or ANOVA_exact functions.

power_within = ANOVA_power(design_within,
nsims = 100000)

exact_within = ANOVA_exact(design_within)

Revisiting our between-participant design, power was 81.14%
when the enjoyment scores were uncorrelated. The power for
a repeated-measures ANOVA based on these values, where
ratings for the three conditions are collected from 80 partic-
ipants, is 98.38%. The effect size η2

p is much larger for the
within-subject design (η̂2

p = 0.12) than for the 3 group between
participants design (η̂2

p = 0.05). However, as explained by
Olejnik and Algina (2003) it is difficult to compare η2

p across
different research designs. Box 2 explains how the default cal-
culation of η2

p by G*Power does not depend on the correlation,
and therefore differs from how all other statistical software
(including SPSS) calculates η2

p. This peculiar choice for a
default leads to errors for power analyses that include within-
subject factors whenever researchers take a η̂2

p reported in the
published literature, and enter it in G*Power as the effect size
(without changing the default power calculation procedure by
choosing the “as in SPSS” checkbox in the options menu).
The Superpower package does not require researchers to enter
η2

p, but allows researchers to enter either a single value for the

correlation between all dependent variables, or a correlation
matrix that specifies the expected population correlation for
each pair of measurements.

Box 2. Formula for effect sizes for within designs

The effect size in a two-group within-design is re-
ferred to as Cohen’s dz (because it is the effect size of
the difference score between x and y, yielding z). The
relation is:

σz = σ
√

2(1 − ρ) (8)

Cohen’s dz is used in power analyses for dependent
t-tests, but there is no equivalent Cohen’s fz for a
within-participant ANOVA, and Cohen’s f is identi-
cal for within and between designs. Instead, the value
for lambda (λ) is adjusted based on the correlation.
For a one-way within-participant design lambda is
identical to Equation 6, multiplied by u, a correction
for within-subject designs, calculated as:

u =
k

1 − ρ
(9)

where k is the number of levels of the within-
participant factor, and ρ is the correlation between
dependent variables. Equations 4 and 5 no longer
hold when measurements are correlated. The default
settings in G∗Power expects an f or η2

p that does not
incorporate the correlation, while the correlation is
incorporated in the output of software packages such
as SPSS. One can enter the η2

p from SPSS output in
G∗Power after checking the ’as in SPSS’ check box
in the options window, but forgetting this is a com-
mon mistake in power analyses for within designs
in G∗Power. For a one-way within-subject design,
Cohen’s f can be converted into the Cohen’s f SPSS
uses through:

f 2
S PS S = f 2 ×

k
k − 1

×
n

n − 1
×

1
1 − ρ

(10)

and subsequently transformed to η2
p through Equation

5.

Power for Interactions

So far we have explored power analyses for one factor designs.
Superpower can easily provide statistical power for designs
with up to three factors of up to 999 levels (e.g., a 4b*2w*2w
would specify a mixed design with two within factors which 2
levels, and one between factor with 4 levels). Let’s assume the
researcher plans to perform a follow-up experiment where in
addition to making the voice sound cheerful or sad, a second
factor is introduced by making the voice sound more robotic
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compared to the default human-like voice. Different patterns
of results could be expected in this 2 by 2 design that lead to
interactions. Either no effect is observed for robotic voices,
or the opposite effect is observed for robotic voices (we enjoy
a sad robotic voice more than a cheerful one, a “Marvin-the-
Depressed-Robot Effect”). We specify the pattern of means as
(1, 0, 0, 0) for the ordinal interactions, or as (1, 0, 0,
1) for the cross-over (or dis-ordinal) interaction, as illustrated
below (see Figure 5 for the expected pattern of means).

design_result_cross <- ANOVA_design(
design = "2b*2b", n = 80,
mu = c(1, 0, 0, 1), sd = 2,
labelnames = c("condition",

"cheerful", "sad",
"voice",
"human", "robot"))
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Figure 5. Vizualization for the expected means and standard
deviations for an ordinal (left) and crossover (right) interac-
tion. Error bars represent one standard deviation.

Simulations (using either the ANOVA_power or
ANOVA_exact functions) show we have 99.38% power for
the cross-over interaction when we collect 80 participants
per condition, and 60.62% power for the ordinal interaction.
For comparison, the power for the simple effect comparing
cheerful and sad human voices, similar to the original
One-Way ANOVA we started with in this tutorial, is 88.16%.
The cross-over interaction has much higher statistical power
than the ordinal interaction because the effect size is twice as
large, as explained in Box 3. The cross-over interaction also
has higher statistical power than the simple comparison, even
though the effect size is identical (Cohen’s f̂ = 0.25) because
the sample size has doubled. The interaction effect can be
contrast coded as 1, -1, -1, 1, and thus tests the scores of 160
participants in the cheerful human and sad robot conditions
against the scores of 160 participants in the cheerful robot
and sad human conditions. The key insight here is that not
the sample size per condition, but the pooled sample size
across conditions compared in a contrast that determines the
power for the main effects and the interaction (cf. J. Westfall,
2015b).

Box 3. Calculating effect sizes for interactions

Mathematically the interaction effect is computed as
the cell mean minus the sum of the grand mean, the
marginal mean in each condition of one factor mi-
nus the grand mean, and the marginal mean in each
condition for the other factor minus grand mean (see
Maxwell et al., 2017). For example, for the cheerful
human-like voice condition in the cross-over interac-
tion this is 1 (the value in the cell) - (0.5 [the grand
mean] + 0 [the marginal mean of cheerful voices
minus the grand mean of 0.5] + 0 [the marginal
mean of human-like voices minus the grand mean
of 0.5]). Thus, 1 - (0.5 + 0 + 0) = 0.5. Completing
this for all four cells for the cross-over interaction
gives the values 0.5, -0.5, -0.5, 0.5. Cohen’s f is

then f =

√
0.52+−0.52+−0.52+−0.52

4

2 = 0.25. For the ordinal
interaction the grand mean is (1+0+0+0)/4, or 0.25.
Completing the calculation for all four cells for the
ordinal interaction gives the values 0.25, -0.25, -0.25,
0.25, and a Cohen’s f of 0.125. We see the effect
size of the cross-over interaction is twice as large
as the effect size of the ordinal interaction. Had we
predicted a pattern of means of 2, 0, 0, 0, then the
effect size for the ordinal interaction would have been
f = 0.25. The take-home message is that a ’medium’
effect size ( f = 0.25) translates into a much more ex-
treme pattern of means in an ordinal interaction than
in a dis-ordinal (crossover) interaction, or in a 2x2x2
interaction compared to a 2x2 interaction (see also
Perugini et al. (2018)). It might therefore be more
intuitive to perform a power analysis based on the
expected pattern of means, than to perform a power
analyses based on Cohen’s f or η2

p.

Plotting Power Curves

The goal of an a-priori power analysis is to determine the
sample size to reach a desired statistical power. By plotting
the statistical power for each effect in the ANOVA design
across a range of sample sizes, one can easily see which
sample size would provide a desired statistical power for all
effects in the ANOVA. Superpower allows users to plot the
statistical power across a range of sample sizes by specify-
ing a desired statistical power and a maximum sample size.
The plots will indicate if the desired power is reached for
each effect, and if so, at which sample size. The code below
specifies a 3x2 between participants design (note that for two
factors a and b, with three and two levels respectively, means
are entered: a1_b1, a1_b2, a2_b1, a2_b2, a3_b1, a3_b2).
The plot_power function plots the power for designs with
10 to 100 participants per condition (see Figure 6 for the
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power curve). There are two main effects, but no interaction
effect. The main effect for factor “a” is the largest, and 90%
power is reached with 29 participants in each condition, while
for factor “b” 90% power is reached with 64 participants in
each condition. Since there is no interaction effect, we only
expect 5% Type 1 errors, regardless of the sample size, and
the desired power of 90% is never reached.

design_result <- ANOVA_design(
design = "3b*2b", n = 50,
mu = c(1, 2, 2, 3, 3, 4), sd = 3)

plot_power(design_result,
min_n = 10, max_n = 100,
desired_power = 90, plot = TRUE)
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Figure 6. Power curves across a range of sample sizes per
group from n = 10 to n = 100 for two main effects and the
interaction.

Plotting power curves across a range of sample sizes is only
implemented for the ANOVA_exact function, and not for the
ANOVA_power function b implemented because this is too
resource intensive. Users will need to steadily increase or
decrease the sample size in their simulations to determine the
sample size required to achieve the desired power for each
effect.

Violation of Assumptions

So far in manuscript we have shown how simulations can
be useful for power analyses for ANOVA designs where all
assumptions of the statistical tests are met. An ANOVA is
quite robust against violations of the normality assumption,
which means the Type 1 error rate remains close to the alpha
level specified in the test. Violations of the homogeneity
of variances assumption can be more impactful, especially
when sample sizes are unequal between conditions. When the
equal variances assumption is violated for a one-way ANOVA
Welch’s F-test is a good default (Delacre, Leys, Mora, & Lak-
ens, 2019). When the sphericity assumption in within designs
is violated (when the variances of the differences between
all pairs are not equal) a sphericity correction can be applied
(e.g., the Greenhouse-Geisser or Huynh-Feldt correction) or a
Multivariate ANOVA (MANOVA) can be performed. Alter-
native approaches for ANOVA designs with multiple between
factors exist, such as heteroskedasticity robust standard errors.
Superpower allows researchers to perform power analyses
for unequal variances (or correlations) by performing Welch’
F-test, applying sphericity corrections, or a MANOVA.

Although some recommendations have been provided to assist
researchers to choose an approach to deal with violations of
the homogeneity assumption (Algina & Keselman, 1997), it
is often unclear if these violations of the homogeneity as-
sumption are consequential for a given study. So far we
have used simulations in Superpower to simulate patterns of
means where there is a true effect, but we can also simulate
a null effect. Such Monte Carlo simulation studies are used
in published articles to examine the Type 1 error rate under
a range of assumptions and while performing different tests.
Superpower makes it easy to perform such simulations studies
for the specific scenario a researcher is faced with, and can
help to make a decision whether violations of assumptions
are something to worry about, and whether choices to deal
with violations are sufficient.

As an example, let’s revisit our earlier 2x2 between subjects
design. Balanced designs (the same sample size in each con-
dition) reduce the impact of violations of the homogeneity
assumption, but let’s assume that for some reason sample sizes
varied between 20 and 80 per cell, and the population standard
deviations varied extremely across conditions (from 1 to 5).
We can use Superpower to estimate the impact of violating
the homogeneity assumption by simulating a null effect (the
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means in all conditions are the same) and examining the Type
1 error rate. We can specify a design with unequal sample
sizes and unequal variances as illustrated in the code below.

design_violation <-ANOVA_design(
design = "2b*2b", n = c(20, 80, 40, 80),
mu = c(0, 0, 0, 0), sd = c(3, 1, 5, 1),
labelnames = c("condition",

"cheerful", "sad",
"voice",
"human", "robot"))

power_result=ANOVA_power(design_violation,
nsims = 100000)

Based on this simulation, the Type 1 error rate for the main
effects and interactions for the ANOVA are approximately
15.85%. Under these assumptions it is clear that the Type 1
error rate is too high. One solution would be to make sure that
an experiment has equal sample sizes. If this is achieved, the
Type 1 error rate is reduced to 4.98%, which is acceptable.

Conclusion

It is important to justify the sample size when designing
a study. Researchers commonly find it challenging to per-
form power analyses for more complex ANOVA designs.
The R package, guide book, and Shiny apps (see https:
//arcaldwell49.github.io/SuperpowerBook) that accompany
this tutorial enable researchers to perform simulations for
factorial experiments of up to three factors and any number
of levels, making it easy to perform simulation-based power
analysis without extensive programming experience. Explor-
ing the power for designs with specific patterns of means,
standard deviations, and correlations between variables can
be used to choose a design and sample size that provides the
highest statistical power for future studies. Simulation based
approaches can also help to provide a better understanding
of the factors that influence the statistical power for factorial
ANOVA designs, or the impact of violations of assumptions
on the Type 1 error rate.
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