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1 Review of Introductory Inference

This section is intended to review the basic knowledge you’ll need for this course.

1.1 Review: Inference

There is some expectation of knowledge that you should know from your previous statistics
course.

Key concepts you are expected to have knowledge of:

• Populations and samples
• Probability
• Random variables
• Probability distributions

– probability density functions
– cumulative distribution functions
– Normal distribution
– 𝑡 distribution
– 𝐹 distribution

• Sampling distributions
• Confidence intervals and hypothesis tests

– one-sample mean
– two-sample means

There will be a brief review of some of the more topics and a set of materials will be linked to
at the end of this appendix.

1.2 General Idea of Inference

We will cover some of the topics you should know from a previous introductory course in
statistics. There is a general procedure that we can conceptualize.

• There is a general target population we are interested in in some way.
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• We have certain questions we want to ask about this population.
• We figure out what can we quantify from the population and how those quantfications

may answer our questions.
• We collect our data/measurements from the population.

– Sometimes (maybe often) the way we collect data changes the exact nature of the
population we are interested in.

• We perform statistical analyses/inference on the population to see how the data answers
our questions.

• We communicate our findings in some way… Typically.
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1.2.1 Populations and Parameters: Means and Standard Deviations

If I have some population 𝑌 :

̄𝑌 → 𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

• 𝜇: mean
• 𝜎: standard deviation

Figure 1.1: Different means and standard deviations
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1.2.2 Estimating The Mean and Standard Deviation

We estimate the mean of a population by taking a sample. We assume simple random samples;
you might want to look up what the means if you forgot.

The estimate of a population mean 𝑚𝑢 is the sample mean which is typically denoted by ̄𝑦.

̄𝑦 = Σ𝑦𝑖
𝑛 → 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝜇

The estimate of the population standard deviation 𝜎 is the sample standard deviation, denoted
by 𝑠.

𝜎̂ = 𝑠 = √Σ(𝑦𝑖 − ̄𝑦)2

𝑛 − 1

We refer to these statistics as point estimates. This term is used to emphasize the fact that
we have some fixed number when we do the calculation.

1.3 Central Limit Theorem, Standard Errors, and Uncertainty

1.3.1 Standard Error

The standard measure of reliability for ̄𝑦 is the standard error.

𝜎 ̄𝑦 = 𝜎√𝑛

1.3.1.1 Estimated SE

𝑆𝐸 ̄𝑦 = 𝑠√𝑛

This is our measurement of relative uncertainty of the sample mean.
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1.3.2 Central Limit Theorem

The standard error is an important part of the Central Limit Theorem (CLT). The bare-
bones of the CLT is:

̄𝑦 ∼ 𝑁(𝜇, 𝜎√𝑛)

• SE: 𝑠√𝑛
• t-distribution

The CLT allows us to, under certain assumptions, figure a range of likely values for the true
mean 𝜇. These assumptions are either:

1. The population we take the sample from is approximately normally distributed, or

2. We have a sufficiently large sample size that we can ignore assumption 1. “Sufficiently
large” is typically characterized as 𝑛 > 30, but that rule-of-thumb would depend on the
population distribution.

A link to a demonstration is here: https://gallery.shinyapps.io/CLT_mean/

1.4 Confidence Intervals for the Mean

This is the (1 − 𝛼)100% confidence interval for 𝜇.

̄𝑦 ± 𝑡𝛼/2,𝑑𝑓
𝑠√𝑛
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 1 − α

• Margin of Error

• The confidence level (1 − 𝛼) ⋅ 100% is the reliability of a computed interval.

• 𝑡𝛼/2,𝑑𝑓 is the value from the 𝑡 distribution with a right tail area of 𝛼/2 and degrees of
freedom 𝑑𝑓 = 𝑛 − 1. The degrees of freedom formula will change depending on what is
being estimated.
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1.4.1 General Form for Confidence Intervals

There are many situations where we are estimating some parameter 𝜃 of a population.

Let ̂𝜃 represent the estimate of 𝜃.

̂𝜃 ± 𝑡𝛼/2,𝑑𝑓 ⋅ 𝑆𝐸 ̂𝜃

1.5 Hypothesies Tests

A hypothesis test is a statistics procedure that is meant to assess the validity that a population
parameter 𝜃 differs from some predefined value 𝜃0.

The basic procedure is this:

1. Hypotheses about 𝜃

• 𝐻0 ∶ 𝜃 = 𝜃0
• 𝐻1 ∶ 𝜃 ≠ 𝜃0

2. Collect data and estimate 𝜃 with ̂𝜃
3. Test statistic

𝑡𝑠 =
̂𝜃 − 𝜃0
𝑆𝐸 ̂𝜃

4. p-value 𝑝 = 𝑃𝑟(𝑇𝑦 ≥ |𝑡𝑠|)

• 𝑝 < 𝛼, if yes then reject 𝐻0
• Remember, 𝛼 is the desired type 1 error rate
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t distribution with 18 degrees of freedom
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1.6 Review Videos (courtesy of JB Statistics and Crash Course)

Given that this is material that you are expected to know for this class, I am only putting this
here as a reminder, and for you to gauge yourself on how much you remember.

Should you feel that you need a refresher, the website and book of Balka (n.d.) provides a
fairly thorough break of any and all the topics you should know about coming into this course
from Biostatistics 101.

I’ve provided links to some of the videos relevant to the pre-requisite material.

1.6.1 Probability Distributions

• Crash Course Distributions

• Normal Distribution:

– An Introduction to the Normal Distribution
– Crash Course on the Normal Distribution
– Standardizing Normally Distributed Random Variables

• 𝑡-distribution:

– An Introduction to the Chi-Square Distribution
– An Introduction to the t Distribution (Includes some mathematical details)
– Intro to the t Distribution (non-technical)

• 𝐹 -distribution: An Introduction to the F Distribution

1.6.2 Sampling Distributions and the Central Limit Theorem (CLT)

• Sampling Distributions: Introduction to the Concept
• The Sampling Distribution of the Sample Mean
• Introduction to the Central Limit Theorem
• Central Limit Demonstration App
• Crash Course Z-score
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https://youtu.be/rBjft49MAO8?si=xBigr0tMYPtK7OnS
https://www.jbstatistics.com/standardizing-normally-distributed-random-variables/
https://www.jbstatistics.com/introduction-to-the-chi-square-distribution/
https://www.jbstatistics.com/introduction-to-the-t-distribution/
https://www.jbstatistics.com/intro-to-the-t-distribution-non-technical/
https://www.jbstatistics.com/introduction-to-the-f-distribution/
https://www.jbstatistics.com/sampling-distributions-introduction-to-the-concept/
https://www.jbstatistics.com/the-sampling-distribution-of-the-sample-mean/
https://www.jbstatistics.com/introduction-to-the-central-limit-theorem/
https://www.biostats.xyz/shiny/SampleMeanCLT/
https://youtu.be/uAxyI_XfqXk?si=S2j-HhayOBeG4jR2


1.6.3 Confidence Intervals

• Crash Course on Confidence Intervals
• Introduction to Confidence Intervals
• Deriving a Confidence Interval for the Mean
• Confidence Intervals for One Mean: Sigma Not Known (t Method)
• Intro to the t Distribution (non-technical)

1.6.4 Hypothesis Tests

• Crash Course p-values: part 1
• Crash Course p-values: part 2
• Crash Course p-values: part 3
• An Introduction to Hypothesis Testing
• t Tests for One Mean: Introduction
• t Tests for One Mean: An Example
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https://www.jbstatistics.com/an-introduction-to-hypothesis-testing/
https://www.jbstatistics.com/t-tests-for-one-mean-introduction/
https://www.jbstatistics.com/t-tests-for-one-mean-an-example/


2 Data and Models

knitr::opts_chunk$set(echo = FALSE, tidy = TRUE,
cache = FALSE,
message = FALSE, WARNING = FALSE)

# Very standard packages
library(graphics)
library(ggplot2)
library(tidyverse)
library(knitr)
library(readr)
library(MASS)
library(plotly)
library(flextable)
# I do not want default theme.
old.theme <- theme_get()
theme_set(theme_bw())

2.1 Data

2.1.1 Variables and Observations

Let’s talk about what we mean by data, in this course.

Data is composed of variables and observations.

Example: We have a patient. We measure their blood pressure. It is observed to be 133/86.

Variable: Blood pressure

Observation: 133/86

Or we could reformulate this

Variables: Systolic blood pressure and diastolic blood pressure.

Observation(s): 133 and 86
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2.1.2 Heart data introduction

heart <- read_csv(here::here("datasets", "Heart.csv"))

as_flextable(head(heart))

age sex chestPain restSysBP cholesterol fastBldSgr restECG maxHR exAng slope majorVessels disease

numeric character character numeric numeric numeric numeric numeric numeric numeric numeric character

63 Male typical 145 233 1 2 150 0 3 0 No

67 Male asymptomatic 160 286 0 2 108 1 2 3 Yes

67 Male asymptomatic 120 229 0 2 129 1 2 2 Yes

37 Male nonanginal 130 250 0 0 187 0 3 0 No

41 Female nontypical 130 204 0 2 172 0 1 0 No

56 Male nontypical 120 236 0 0 178 0 1 0 No

n: 6
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2.1.3 Heart Disease Data Dictionary

A data dictionary explains what the “names” of variables in a dataset mean. For the heart
data:

• age: The patient’s age in years

• sex: The patient’s sex, Male or Female.

• chestPain: The chest pain experienced

– typical: typical angina
– nontypical’: abnormal angina
– nonaginal: non-anginal pain
– asymptomatic: no pain

• restSysBP: systolic blood pressure upon admission to hospital in mm Hg

• cholesterol: The patient’s cholesterol measurement in mg/dl

• fastBldSgr: indicator for whether the paitient’s fasting blood sugar was greater than
120 mg/dl: 1 if yes, 0 if no.

• restECG: Resting electrocardiographic measurement

– 0: normal
– 1: having ST-T wave abnormality
– 2 showing probable or definite left ventricular hypertrophy by Estes’ criteria

• maxHR: The patient’s maximum heart rate achieved during controlled exercise

• exAng: Exercise induced angina: 1 if yes, 0 if no

• slope: the slope of the peak exercise ST segment

– 1 if slope is positive
– 2 if slope is approximately 0
– 3 if slope is negative

• majorVessels: The number of major vessels (0-3) colored in fluoroscopy.

• disease: Indicates whether a patient had heart disease: Yes if yes, no if no.
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2.2 Mathematical Models

2.2.1 input and output

The whole

The general form of a model is deceptively simple:

𝑖𝑛𝑝𝑢𝑡 → 𝑜𝑢𝑡𝑝𝑢𝑡.

We have some information, the input, we use some process, →, in order to get some information,
the output.

Model: put a quarter in the gumball machine, turn the knob, and a gumball comes out.

Figure 2.1: We have quarter as input to the process, gumball machine, which allows to yield a
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2.2.2 Mathematical models

We are doing math here. We will represent our input as 𝑥, and our output as 𝑦. We put our
input 𝑥 into some function 𝑔().

𝑦 = 𝑔(𝑥)

• 𝑥 is the input
• 𝑔 is the →
• 𝑦 is the output

𝑦 = 𝑎 + 𝑏 ⋅ 𝑥

0

1

2

3

0 1 2 3 4 5
x

y

y = a + b*x
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y = exp(a + b*x) | log(y) = a + b*x

2.2.3 Heart Model

The Mayo Clinic says “You can calculate your maximum heart rate by subtracting your age
from 220”.

• 𝑚𝑎𝑥𝐻𝑅 = 220 − 𝑎𝑔𝑒
• 𝑦 = 220 − 𝑥

– y is maxHR
– x is age
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2.2.3.1 What about with the real data?
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2.3 Statistical models and Error

𝑦 = 𝑔(𝑥) + 𝜖

• y = response
• x = predictor
• g(x) = function
• 𝜖 = error or variability in the model

2.3.1 Heart example

The Mayo Clinic also specifies “You may have a higher or lower maximum heart rate, sometimes
by as much as 15 to 20 beats per minute”.

𝑀𝑎𝑥𝐻𝑅 = 220 − 𝑎𝑔𝑒 ± 20

100
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30 40 50 60 70
age

m
ax

H
R

What’s going on here?

1. The guidelines from the Mayo Clinic apply mainly to the overall population of adults
(age 16+).

2. This data is based on a study about heart disease.
3. Primarily, there are two groups in the data: those with heart disease, and those without.
4. Maybe heart disease has an effect.
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2.3.1.1 Grouping Means
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2.3.2 Conditional Means vs Unconditional Means

Let’s concentrate on the formula for basic statistical models.

𝑦 = 𝑔(𝑥) + 𝜖

2.3.2.1 Simplest Example

Unconditional Mean

𝑦 = 𝜇 + 𝜖
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2.3.2.2 Simple Model With Disease

𝑦 = 140 ± 23
Why might we use this model?

100
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40 50 60 70
age

m
ax

H
R

Percent 140 +/- 23
82.01439
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2.3.2.3 Model for Those Without Disease

The average maxHR should be about 214 - age, the standard deviation of that model is about
16

We denote this as:

𝑦 = 214 − 𝑥 ± 16

120

150

180

30 40 50 60 70
age

m
ax

H
R

Percent 214 - x +/- 16
0.7256098
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2.4 Linear models

2.4.1 Simple linear models: one predictor variable.

The simple linear model says the 𝜇𝑦|𝑥 is a line that depends on 𝑥 based on a 𝑦-intercept which
we denote by 𝛽0 and a slope which we denote 𝛽1.

𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥

• Conditional mean (deterministic)
• 𝛽0: y-intercept
• 𝛽1: slope

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 = 𝜇𝑦|𝑥 + 𝜖

• 𝜖 is the error in the model (noted as “randomness” in some lecture videos1)

2.4.2 Linear models with more than one predictor variable

A linear model in general means a model that can be written as a sum of variables and
coefficients:

𝑦 = 𝛽0 +
𝑘

∑
𝑖=1

𝛽𝑖𝑥𝑖 + 𝜖

• 𝜇𝑦|𝑥 deterministic
• 𝜖 is the model error

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ... + 𝛽𝑘𝑥𝑘 + 𝜖

1We should
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3 Measuring Association

knitr::opts_chunk$set(echo = FALSE, tidy = TRUE, cache = FALSE, message = FALSE, WARNING = FALSE)
# Very standard packages
library(graphics)
library(ggplot2)
library(tidyverse)
library(knitr)
library(MASS)

# Not so standard
library(gridExtra) # for grid.arrange(), grids of plots in ggplot without facet_grid
library(ggpubr) #for stat_cor function which adds correlation coefficient to ggplot
library(energy) # distance correlation function and t-test in here
library(scatterplot3d) # for easy/boring scatterplots that work in PDF knit

# Good for running
library(ggstatsplot)
# Globally changing the default ggplot theme.

## store default
old.theme <- theme_get()

## Change it to theme_bw(); i don't like the grey background. Look up other themes to find your favorite!
theme_set(theme_bw())
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3.1 Getting Started

Let’s look back at that heart data.
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3.2 Linear Correlation

We refer to the strength of relation between two variables to be their correlation. There are
a few common ways to measure correlation. The most common is the following.

Pearson product-moment correlation:

𝑟 = ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) (𝑌𝑖 − ̄𝑌 )

√∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 ∑𝑛

𝑖=1 (𝑌𝑖 − ̄𝑌 )2

Here are some of the common properties of 𝑟:

• It can take on a value from -1 to 1.
• If it is negative, then there is a “negative” relation between 𝑥 and 𝑦 which means as 𝑥

increases, 𝑦 decreases.
• If it is positive, then there is a “positive” relation between 𝑥 and 𝑦 which means as 𝑥

increases, 𝑦 increases.
• The closer to -1 or 1, the closer the 𝑥 and 𝑦 observations follow a straight line.
• The above calculation is an estimate of what is the true correlation between two random

variables/populations 𝑋 and 𝑌 .
• This true correlation is denoted by 𝜌
• Thus, 𝑟 is a point estimate (remember that term?) of 𝜌 (i.e., it is ̂𝜌).
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3.2.1 Correlation Strength Examples
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3.2.2 Linear correlation of the heart data

R = − 0.52
R = − 0.13
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3.2.3 Correlation does not imply causation

Messerli, F. H. (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates.
New England Journal of Medicine, 367(16), 1562-1564. doi:10.1056/nejmon1211064

The author tried to assert that this point towards the idea that chocolate increases cognitive
function.

Figure 3.1: Choclate consumption and Nobel Prizes

A rebuttal from various authors produced the following graphs. What might be in common?

42



3.2.4 cOrReLlAtIoN dOeS nOt ImPlY cAuSaTiOn

I feel like this is a fall back phrase for those that just want some sort of easy yes/no kind of
answer. “It’s a correlation? Then this result is worthless.” This is incredibly lazy logic.

• Do not dismiss correlations out of hand.

• Use them to ask questions!

• Correlation may not imply causation but it does imply a connection.

• Finding the connection the cause of the non-cause would be quite interesting in a lot of
scenarios.

Correlation ≠ causation can be abused.

An article from the Science Based Medicine blog says:

“For example, the tobacco industry abused this fallacy to argue that simply because
smoking correlates with lung cancer that does not mean that smoking causes lung
cancer. The simple correlation is not enough to arrive at a conclusion of causation,
but multiple correlations all triangulating on the conclusion that smoking causes
lung cancer, combined with biological plausibility, does.”

It should be noted that other methods can, and should, be used to derive causation

3.3 Non-linear correlation

First, let’s look at a purely deterministic system.

• pressure is vapor pressure of mercury in mm Hg. (pressure inside a closed system)
• temperature is the temperature in ∘𝐶.
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3.3.1 True Pressure Equation

How precise? Well here is the equation for calculating the vapor pressure of an element or
molecule.

𝑃 = 10
⎛⎜
⎝

𝐴 − 𝐵
𝐶 + 𝑇

⎞⎟
⎠

• 𝑃 is vapor pressure.
• 𝐴, 𝐵, and 𝐶 are constants based on the temperature scale, pressure scale, and ele-

ment/molecule.
• 𝑇 is the temperature.

The NIST reports the constants for mercury when pressured is measured in bar and temper-
ature is measured in Kelvin (K)

• 𝐴 = 4.85767

• 𝐵 = 3007.129

• 𝐶 = −10.001

Notice these are constants. No randomness here, no error here.
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3.3.2 Using the Equation

Next, let’s plot the equation to our points.
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The relationship between vapor pressure and temperature seems to be perfectly accounted for
by this equation. If we were to have a way to measure the strength of the relationshipo, it
would hopefully reflect that perfect relation.

R = 0.76
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3.3.3 Using Transformations

𝑃 = 10
⎛⎜
⎝

4.85767 − 3007.129
−10.001 + 𝑇

⎞⎟
⎠

R = 1, p < 2.2e−16
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3.4 Zero Linear Relation Examples

1. Data falling on a circle. This is a “non-functional” relatioship. The mathematical def-
inition of a function stipulates only one value of 𝑓(𝑥) is the outcome for a value of
𝑥. Another way of saying this is that one input value 𝑥 should result in one and only
one output value 𝑦. (Remember that horizontal line rule?) On a circle, two values are
possible for an input value of 𝑥, except the leftmost and rightmost points of the circle.

2. Data from a sine wave.
3. Data from a quadratic function.

3.4.1 Circle
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tStudent(498) = −0.67, p = 0.50, rPearson = −0.03, CI95% [−0.12, 0.06], npairs = 500

48



3.4.2 Sine Wave
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tStudent(498) = 1.85, p = 0.07, rPearson = 0.08, CI95% [−5.28e−03, 0.17], npairs = 500

49



3.4.3 Quadratic
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tStudent(498) = 0.27, p = 0.79, rPearson = 0.01, CI95% [−0.08, 0.10], npairs = 500

3.5 Kendall’s 𝜏 : A Correlation that identifies certain non-linear

Concordance: (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) is positive. The pair of points indicate a positive trend.

Discordance:(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) is negative. The pair of points indicate a negative trend.

̂𝜏 = 2
𝑛(𝑛 − 1) ∑

𝑖<𝑗
𝑠𝑔𝑛 (𝑥𝑖 − 𝑥𝑗) 𝑠𝑔𝑛 (𝑦𝑖 − 𝑦𝑗)

𝑠𝑔𝑛(𝑥) =
⎧{
⎨{⎩

1, 𝑥 > 0
−1, 𝑥 < 0
0, 𝑥 = 0

Note: Kenall’s 𝜏 should only be used for “monotonic” functions. Monotonic functions can
only have an upward trend that is never downward, or vice versa. (Non-decreasing or non-
increasing.)

Another Note: There are three commonly used versions of Kendall’s 𝜏 . This one is known
as Tau-a. Tau-b should be used for data where there ties.
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3.5.1 Alternative Expression for Kendall’s 𝜏

We can express Kendall’s 𝜏 in a more intuitive way. Remember a pair of observations is (𝑥𝑖, 𝑦𝑖)
and (𝑥𝑗, 𝑦𝑗).

• Let 𝑛𝑐 be the number of concordant pairs of observations.
• Let 𝑛𝑑 be the number of discordant pairs of observations.
• Let 𝑁 be the total number of possible unique pairs of observations.

𝜏 = 𝑛𝑐 − 𝑛𝑑
𝑁

or

𝜏 = 𝑝𝑐 − 𝑝𝑑

where

• 𝑝𝑐 is the proportion of times 𝑥 and 𝑦 increased together.
• 𝑝𝑑 is the proportion of times 𝑦 decreased when 𝑥 increased.

Note that 𝑁 = (𝑛
2) = 𝑛(𝑛−1)

2 , where 𝑛 is the number of observations.

This may make the interpretation a little more graspable.

• 𝑝𝑐 + 𝑝𝑑 must equal 1. (And 𝑛𝑐 + 𝑛𝑑 must equal 𝑁). A consequence of this and the fact
that 𝜏 = 𝑝𝑐 − 𝑝𝑑

– 𝑝𝑐 = 1+𝜏
2

– 𝑝𝑑 = 1−𝜏
2

• When 𝜏 is positive it is how much more often we see an concordance, i.e., 𝑥 increases
when 𝑦 increases, compared to discordance where 𝑥 increases and 𝑦 decreases.

– If 𝜏 = 0.5 then 𝑝𝑐 = 0.75 and 𝑝𝑑 = 0.25. So 75% of the time 𝑦 was increasing
compared to 25% of the time

• When 𝜏 is negative its absolute value is how much more likely we are to see a decrease
in 𝑦 when 𝑥 increases.

• If 𝜏 = −0.7 then 𝑝𝑐 = 0.15 and 𝑝𝑑 = 0.85, so 85% of the time we saw a decrease in 𝑦
whereas only 15% of the time we saw an increase in 𝑦

51



3.5.2 Kendall’s 𝜏 with the pressure data

Recall the vapor pressure example.
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T = 5.98, p = 2.20e−09, τKendall = 1.00, CI95% [1.00, 1.00], nobs = 19
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3.5.3 Kendall’s 𝜏 on some mice proteins data
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3.5.4 A transformation
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3.5.4.1 Monotonic

• Definition: In the context of a sequence of numbers, “monotonic” means the sequence
is either always increasing or always decreasing. It moves in one direction, without
changing direction.

• Explanation: Think of a monotonic sequence like walking up or down a staircase.
You’re either consistently going upwards (increasing) or consistently going downwards
(decreasing). You never switch directions and go up and then down, or down and then
up.

Examples:

• Monotonic Increasing: 2, 5, 8, 11, 15 (each number is larger than the one before it)
• Monotonic Decreasing: 10, 7, 4, 1, -2 (each number is smaller than the one before it)
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• Not Monotonic: 3, 6, 4, 8 (it increases, then decreases, so it’s not monotonic)

Monotonic Transformation

• Definition: A monotonic transformation is a way of changing a set of numbers into a
different set of numbers, but in a way that preserves the order of the original set.

• Explanation: Imagine you have a line of people arranged from shortest to tallest. A
monotonic transformation would be like giving everyone in line platform shoes. Everyone
gets taller, but the order from shortest to tallest stays the same.

Examples:

• Original sequence: 2, 5, 8

– Monotonic transformation (adding 3 to each number): 5, 8, 11
– Monotonic transformation (multiplying each number by 2): 4, 10, 16

Why is this important in statistics?

Monotonic transformations are useful in statistics because they can sometimes simplify data
analysis without changing the fundamental relationships within the data. For instance, they
can be used to:

• Make data easier to work with: Transforming data can sometimes make it easier to
visualize or analyze.

• Meet the assumptions of statistical tests: Some statistical tests require data to
have certain properties. Monotonic transformations can sometimes help data meet those
assumptions.

Key takeaway: Monotonic means “always going in one direction.” A monotonic transforma-
tion changes the values in a dataset but keeps the order the same.
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4 Simple Linear Regression

knitr::opts_chunk$set(echo = TRUE, tidy = TRUE,
cache = T, message = FALSE, warning = FALSE)

# Very standard packages
library(tidyverse)
library(knitr)
library(ggpubr)
library(readr)

library(ggstatsplot)
# Globally changing the default ggplot theme.

## store default
old.theme <- theme_get()

## Change it to theme_bw(); i don't like the grey background.
## Look up other themes to find your favorite!
theme_set(theme_bw())

The Model, Estimating the Line, and Coefficient Inference

4.1 Statistical Models

Simple Model:

𝑌 ∼ 𝑁(𝜇, 𝜎)

This can be translated to:

𝑌 = 𝜇 + 𝜖

Where 𝜖 ∼ 𝑁(0, 𝜎).
This second form is the basis for linear models:
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• The mean of a random variable 𝑌 can be written as a linear equation which in this case
would be just a flat line.

• There is an error term 𝜖 that describes the deviation we expect to see from the mean.
• 𝜖 having a mean of 0 means that the linear equation for the mean of 𝑌 is correctly

specified.
• By correctly specified I mean that we don’t know what the actual mean of 𝑌 is, we are

just crossing our fingers.

A more general model would be:

𝑌 = 𝑔(𝑥) + 𝜖

• 𝑔(𝑥) represents some sort of function with an argument 𝑥 which outputs some constant.
• 𝑔(𝑥) is the deterministic portion of our model, i.e., it always gives the same output

when given a single input.
• 𝜖 is the random component of our model.
• The whole entire point of statistics is that there is randomness and we have to figure out

how to deal with it.
• We try to distill the signal 𝑔(𝑥) out of the noise 𝜖 of chaos/randomness. (Maybe overly

“poetic”)

Anyway, we try to take a stab at (guess) what the structure of 𝑔() is.

𝑌 = 𝜇 + 𝜖 with 𝜖 ∼ 𝑁(0, 𝜎) is about as simple of a model as we get.

We will assume from hereon that 𝜖 ∼ 𝑁(0, 𝜎)
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4.1.1 The Linear Regression Model

We assume that the mean is some linear function of some variables 𝑥1 through 𝑥𝑘.

𝑌 = 𝛽0 +
𝑘

∑
𝑖=1

𝛽𝑖𝑥𝑖 + 𝜖

We will first start with the simplest linear regression model which is one that has only one
input variable.

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜖

This gives us the form for how we could picture the data produced by the system we try to
model.

n = 50

# Need x values
dat <- data.frame(x = rnorm(n, 33, 5)) #n, mu, sigma

# need a value for coefficients.
B <- c(300, -5) # don't forget the y-intercept.

# Deterministic portion
dat$mu_y <- B[1] + B[2] * dat$x

# Introducing error
dat$err <- rnorm(n, 0, 20)

dat$y <- dat$mu_y + dat$err

ggplot(dat, aes(x = x, y = y)) + geom_point(data = dat, mapping = aes(x = x, y = mu_y),
col = "red") + geom_point(data = dat, mapping = aes(x = x, y = y), col = "blue") +
geom_segment(aes(xend = x, yend = mu_y), alpha = 0.8, col = "royalblue3") + geom_abline(intercept = B[1],
slope = B[2]) + theme_bw()
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• The black line is the true mean of 𝑌 at a given value of 𝑥: 𝜇𝑦|𝑥 = 300 − 5𝑥
• The red dots are randomly chosen points along the line.
• The blue dots are what happens when we include that error term 𝜖 and shows how actual

observations deviate from the line.
• Run this code a few times to see things sample to sample.
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4.1.2 Comparing the Real to the Ideal

Here is data on 226 beers: ABV and Calories per 12oz.

Alcohol “contains” calories, so the more alcohol in a beer means more calories!

Assuming you have a 12 ounce mixture of water and pure alcohol (ethanol) the exact equation
for the number of calories based on ABV denoted by 𝑥 is

𝑓(𝑥) = 19.05𝑥 + 0

Let’s plot out the data on the beers and that equation.

beer <- read.csv(here::here("datasets", "beer.csv"))

ggplot(beer, aes(x = ABV, y = Calories)) + geom_point() + geom_abline(slope = 19.05,
col = "red")
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Looks like that misses the mark. I suppose there is other stuff in beer besides alcohol.

So if were to plot a line for the actual on hand, perhaps you will agree that the one in blue is
a “good” one.
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## OLD CODE ggplot(beer, aes(x = ABV, y = Calories)) + geom_smooth(method =
## 'lm', se = F) + geom_point() + geom_abline(slope = 19.05, col = 'red') +
## stat_cor()

# NEW CODE
ggscatterstats(data = beer, x = ABV, y = Calories, bf.message = FALSE, marginal = FALSE) +

geom_abline(slope = 19.05, col = "red")
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tStudent(224) = 31.89, p = 3.07e−85, rPearson = 0.91, CI95% [0.88, 0.93], npairs = 226

The blue line is the one we will learn how to make.

The line is meant to estimate the mean value of 𝑌 :

𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥

We have to figure out what values we should use for 𝛽0 and 𝛽1.

• 𝛽0 and 𝛽1 are the true and exact values for the intercept and slope of the line. These
are unknown and are referred to as parameters of our model.

• We but ^ over the symbol for parameters to denote an estimate of the parameter.
• ̂𝛽0 is our 𝑦 intercept estimate.
• ̂𝛽𝑖 is our slope estimate.
• Our overall estimate for the line is ̂𝜇𝑦|𝑥 = ̂𝛽0 + ̂𝛽𝑖𝑥
• Often we also write ̂𝑦 = ̂𝛽0 + ̂𝛽𝑖𝑥.
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Regardless, what approach(es) can we take to create 𝑔𝑜𝑜𝑑 values for ̂𝛽0 and ̂𝛽𝑖?
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4.2 Least Squares Regression Line

Here is a plot of the data with what is called the least squares regression line.

beerLm <- lm(Calories ~ ABV, beer)

ggplot(beer, aes(x = ABV, y = Calories)) + geom_point() + geom_smooth(method = "lm",
se = FALSE) + geom_segment(aes(x = ABV, y = Calories, xend = ABV, yend = beerLm$fitted.values),
alpha = 0.8, col = "royalblue3") + theme_bw()
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4.2.1 Measuring Error

• Sum of Squared Error

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ( ̂𝛽 + ̂𝛽𝑥𝑖))
2

=
𝑛

∑
𝑖=1

𝑒2
𝑖
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4.2.2 OLS solution (You can ignore this if you want.)

We want to find values of ̂𝛽0 and ̂𝛽𝑖 that minimize the error sum of squares:

𝑆𝑆𝐸 = ∑(𝑦 − ̂𝑦)2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − ( ̂𝛽0 + ̂𝛽𝑖𝑥𝑖))
2

.

To estimate to find
𝜕

𝜕 ̂𝛽𝑖
𝑆𝑆𝐸 = ∑ −2𝑥(𝑦 − ( ̂𝛽0 + ̂𝛽𝑖)) = 0

After substituting in our equation for ̂𝛽𝑖 above and doing quite a lot of algebra, we can make
̂𝛽𝑖 the subject.

̂𝛽𝑖 = ∑ 𝑥𝑦 − 𝑛 ̄𝑥 ̄𝑦
∑ 𝑥2 − 𝑛 ̄𝑥2

= ∑ (𝑥 − ̄𝑥)(𝑦 − ̄𝑦)
∑ (𝑥 − ̄𝑥)2

𝜕
𝜕 ̂𝛽0

𝑆𝑆𝐸 = ∑ −2 (𝑦𝑖 − ( ̂𝛽0 + ̂𝛽𝑖𝑥𝑖)) = 0

∑ (𝑦𝑖 − ( ̂𝛽0 + ̂𝛽𝑖𝑥𝑖)) = 0
∑ 𝑦 = ∑ (𝑦𝑖 − ( ̂𝛽0 + ̂𝛽𝑖𝑥𝑖))
∑ 𝑦

𝑛 =
∑ ( ̂𝛽0 + ̂𝛽𝑖𝑥𝑖)

𝑛
̄𝑦 = ̂𝛽0 + ̂𝛽𝑖 ̄𝑥

Substituting ̄𝑥 into the regression line gives ̄𝑦. In other words, the regression line goes through
the point of averages.
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4.2.3 Now you “know” the theory, lets look at what we do.

Okay, we’re using R. That function does regression for us? lm() !!!

Use ?lm to get a somewhat understandable summary that works pretty well once you learn
how people screw up summarizing functions…

Any… Back to lm()

• there is a formula argument and a data argument. That’s all you need to know for now.

Let’s use it on that beers dataset and see what we get.

### Make an lm object

beers.lm <- lm(Calories ~ ABV, beer)

summary(beers.lm)

Call:
lm(formula = Calories ~ ABV, data = beer)

Residuals:
Min 1Q Median 3Q Max

-40.738 -13.952 1.692 10.848 54.268

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.2464 4.7262 1.745 0.0824 .
ABV 28.2485 0.8857 31.893 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.48 on 224 degrees of freedom
Multiple R-squared: 0.8195, Adjusted R-squared: 0.8187
F-statistic: 1017 on 1 and 224 DF, p-value: < 2.2e-16

Our estimated regression line is:

̂𝑦 = 8.2364 + 28.2485𝑥

Or to write it as an estimated conditional mean.
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̂𝜇𝑦|𝑥 = 8.2364 + 28.2485𝑥

And that’s where we get this line:

ggplot(beer, aes(x = ABV, y = Calories)) + geom_point() + geom_smooth(method = "lm",
se = TRUE)
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Additionally for the 𝜖 ∼ 𝑁(0, 𝜎) term in the theoretical model,

• Residual standard error: 17.48 in our output tells us

• 𝜎̂ = 17.48 which means that at a given point on the line, we should expect the calorie
content of individuals beers to fall above or below the line by about 17.48 calories.
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4.2.4 Interpreting Coefficients

So we’ve got the slope estimate ̂𝛽𝑖 and we’ve got the intercept estimate ̂𝛽0.

In general:

• The slope tells us how much we expect the mean of our 𝑦 variable to change when the 𝑥
variable increases by 1 unit.

• The intercept tells us what we would expect the mean value of 𝑦 to be when the 𝑥
variable is at 0 units.

• Sometimes the intercept does not make sense.

– This is usually because 𝑥 = 0 is not within the range of our data.
– Or impossible.
– Or near the 𝑥 = 0 range, the relationship between

For our data:

• The intercept of 8.2464 indicates that the model predicts that the mean calorie content
of “beers” with 0% ABV is 8.2464 calories.

– There are some beers that are advertised as “non-alcoholic”.
– They have “negligble” amounts of alcohol but it is non-zero.
– Whether this is completely sensical or not depends on what you define as a beer.

• The slope of 28.2485 indicates that when we look at the mean calorie of beers, it should
be 28.2485 calories higher of beers with a 1% higher ABV.

– This makes sense, i.e., alcohol has calories so more alcohol means more calories.

You always should look at your results and ask your self, “Does this make sense”?

• Usually the question of y-intercept making sense or not is not really a useful one.
• We need a y-intercept to have a line, and very often the data and what is reasonably

observable does not include observations where 𝑥 ≈ 0.
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4.2.5 Prediction Using The Line

For our beers data, for beers with 5% ABV, we would expect an average calorie content of

̂𝜇𝑦|𝑥 = 8.2364 + 28.2485 ⋅ 5

= 149.4789

Great, but what if you tell me you make beer at home and measure the ABV to be 5%.

• How many calories are in that specific Beer?
• We could say approximately 150 calories but that let’s not forget that we have an es-

timated error standard deviation of 𝜎̂ = 17.48 so it might be better to say the calorie
content is some where in the 131.9989 to 166.9589 range (if we’re using a bunch of decimal
places.)

• Honestly when doing casual intreptations it might be better to say 150 ± 20 because its
all about imprecision anyway.

4.2.6 Predict Function in R

Use the predict() function to get estimates for the mean which can be point esti-
mates/predictions.

• The point of a regression model is estimate some sort model, and the method for doing
so is called predict. It works like so:

predict(lmModel, newdata)

• Here lmModel is an already estimated model, and newdata is a dataset (referred to as
data frame in R) containing the new cases, real or imaginary, for which we want to make
predictions.

# Create a dataset for predicting average calories in beers with ABVs of 1%,
# 2%, 3%, ..., 10% R can create this vector easily with the `:` operator.
# `A:B` creates a vector that starts at A and goes up by 1 until it reaches
# (but does not exceed) B 1:10 represents the vector c(1, 2, 3, 4, 5, 6, 7, 8,
# 9, 10)

predictionData = data.frame(ABV = 1:10)

predict(beers.lm, newdata = predictionData)
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1 2 3 4 5 6 7 8
36.49494 64.74349 92.99203 121.24058 149.48913 177.73768 205.98623 234.23478

9 10
262.48333 290.73188

• If you do not correctly specify the correct vector name in your newdata argument, then
predict will simply give you the fitted ̂𝑦 values for each point in your data.
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4.3 Statistcal Inference in Linear Regression

ggplot(beer, aes(x = ABV, y = Calories)) + geom_point() + geom_smooth(method = "lm",
se = TRUE)
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There’s bands around that line.

• This represents the fact that we don’t know the true regression line and are trying to
account for how imprecise our estimate is.

• It displays a continuum for plausible values of the true line ̂𝜇𝑦|𝑥 based on our sample
data.
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4.3.1 Example

Let’s look at what happens when the true model is 𝑌 = 300 − 5𝑥 + 𝜖 when 𝜖 ∼ 𝑁(0, 20) and
we take a sample of 50 individuals.

• The sample observations will be plotted in blue.
• The estimated regression line from those observations will be red.
• The true line will be in black.

n = 50

set.seed(11)

# Need x values
dat <- data.frame(x = rnorm(n, 33, 5)) #n, mu, sigma

# need a value for coefficients.
B <- c(300, -5) # don't forget the y-intercept.

# Deterministic portion
dat$mu_y <- B[1] + B[2] * dat$x

# Introducing error
dat$err <- rnorm(n, 0, 20)

dat$y <- dat$mu_y + dat$err

ggplot(dat, aes(x = x, y = y)) + geom_point(data = dat, mapping = aes(x = x, y = y),
col = "blue") + geom_smooth(method = "lm", col = "red") + geom_abline(intercept = B[1],
slope = B[2], col = "black") + theme_bw()
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Given that we have sample data, we can’t expect our line to be the true line.

This is because there is variability associated with our slope estimate and variability associated
with our intercept estimate.
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4.3.2 Tests for the Line Coefficients

The ̂𝛽’s are referred to as coefficients.

When you see the output for the summary of our lm, draw your attention to this part of the
output.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.2464 4.7262 1.745 0.0824 .
ABV 28.2485 0.8857 31.893 <2e-16 ***

We are seeing various pieces of information. From left to right:

• We point estimates for the 𝑏̂𝑒𝑡𝑎’s.
• We are given standard errors for those estimates.
• We are given test statistics foir some hypothesis test (what is it)?
• We are given the p-value for that test.

The hypothesis test is this:

𝐻0 ∶ 𝛽𝑖 = 0
𝐻1 ∶ 𝛽𝑖 ≠ 0

The test statistic is:

𝑡 =
̂𝛽𝑖

𝑆𝐸 ̂𝛽𝑖

We simple divide our coefficient estimate by its standard error.

The test statistic is assumed to be from a 𝑡 distribution with degrees of freedom 𝑑𝑓 = 𝑛 − 2.
For the y-intercept, we get a p-value of 0.0824:

• Our conclusion would be that there is moderate evidence that there is a true y-intercept
in the model.

• Inference on the y-intercept is considered not important usually.

For the slope the p-value is approximately 0:

• Conclusion: There is extremely strong evidence of a linear component that relates ABV
with calories.

• This is usually what we are concerned with.
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4.3.3 Confidence Intervals

We can likewise get confidence intervals for the coefficients. They take the general form:

̂𝛽𝑖 ± 𝑡𝛼/2,𝑛−2 ⋅ 𝑆𝐸 ̂𝛽𝑖

Again the 𝑡𝛼/2 quantile depends on the value for 𝛼 of the desired nominal confidence level
1 − 𝛼.
To get the confidence intervals we use the confint() function.

confint(beers.lm, level = 0.99)

0.5 % 99.5 %
(Intercept) -4.031982 20.52476
ABV 25.947491 30.54961

Our interval indicates statistically plausible (which means disregarding context) levels for a
y-intercept of the true line is between -4.03 and 20.52 with 99% confidence.

And plausible values for the increase in calories when beers have 1% higher ABV is between
25.95 and 30.55 with 99% confidence.

Do these CIs indicate any compatibility with the line for the theoretical line that computes
(exactly) the amount of calories in a can of water with percentage of pure ethanol by volume?

𝑓(𝑥) = 19.05𝑥
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5 Inference on the Regression Line

Here are some code chunks that setup this document.

# Here are the libraries I used
library(tidyverse)
library(knitr)
library(readr)
library(ggpubr)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())
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# Fun fact. If you put the dataset in the same folder as the Rmd/qmd file you are
# working in. Then you only need the filename to load it. Not the whole file
# path on your computer.
#
# I prefer to use the here package to resolve local path issues

heart <- readr::read_csv(
here::here("datasets","Heart.csv")

)

ggplot(heart, aes(x = age, y = maxHR, color = disease)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
facet_wrap(~disease) +
stat_cor()

R = − 0.52, p = 6.5e−13
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We can filter() the data and only examine individuals without heart disease since the
relation doesn’t appear viable in those with heart disease.

noDisease <- filter(heart, disease == "No")

ggplot(noDisease, aes(x = age, y = maxHR)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
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Anyway, there’s a line let’s see what the equation for it is.

# nD is short for no Disease
nD.lm <- lm(maxHR ~ age, noDisease)

nD.lm.sum <- summary(nD.lm)

nD.lm.sum

Call:
lm(formula = maxHR ~ age, data = noDisease)

Residuals:
Min 1Q Median 3Q Max

-54.545 -7.782 2.524 10.004 31.624

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 213.9282 7.2204 29.628 < 2e-16 ***
age -1.0564 0.1351 -7.818 6.47e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.41 on 162 degrees of freedom
Multiple R-squared: 0.2739, Adjusted R-squared: 0.2694
F-statistic: 61.12 on 1 and 162 DF, p-value: 6.469e-13

So the equation to our line would be:

𝑚̂𝑎𝑥𝐻𝑅 = 213.9 − 1.06 ⋅ 𝑎𝑔𝑒

5.0.0.1 Confidence Intervals for Coefficients

confint(nD.lm, level = 0.99)
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0.5 % 99.5 %
(Intercept) 195.108145 232.7482574
age -1.408595 -0.7041663
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5.1 Uncertainty in the Model

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖𝑒𝑟𝑟𝑜𝑟

𝜖 ∼ 𝑁(𝜃, 𝜎𝜖)

The 𝜖 representing the inherent variability we would expect from individual observations.

5.2 Partitioning Variability

At this point, we will be examining data for those without heart disease only,
unless mentioned otherwise.

̂𝑦 = ̂𝜇𝑦|𝑥 = ̂𝛽0 + ̂𝛽1𝑥

5.2.1 Sums of Squares

𝑆𝑆𝑇 𝑂 = Σ𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

𝑠2
𝑦 = 𝑆𝑆𝑇 𝑂

𝑛 − 1

This variability in the variable can be broken up into two pieces:
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1. The Sum of Squares of Regression 𝑆𝑆𝑅.

𝑆𝑆𝑅 = Σ( ̂𝑦 − ̄𝑦)2

2. The Sum of Squared Error 𝑆𝑆𝐸.

𝑆𝑆𝐸 = Σ(𝑦𝑖 − ̂𝑦𝑖)2

The two sums of squares combined are the total variability 𝑆𝑆𝑇 𝑂.

𝑆𝑆𝑇 𝑂 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸
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5.2.2 Coefficient of Determination 𝑅2

𝑅2 = 𝑆𝑆𝑅
𝑆𝑆𝑇 𝑂 = 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑

𝑇 𝑜𝑡𝑎𝑙

which is the ratio of how much of the total variability in our data that is “explained” by our
model.

Often the form of 𝑅2 is written as

𝑅2 = 1 − 𝑆𝑆𝐸
𝑆𝑆𝑇 𝑂

5.2.2.1 Interpreting 𝑅2

“The regression model is accounting for <𝑅2 ⋅ 100>% of the variability in <the response
variable.”

nD.lm.sum

Call:
lm(formula = maxHR ~ age, data = noDisease)

Residuals:
Min 1Q Median 3Q Max

-54.545 -7.782 2.524 10.004 31.624

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 213.9282 7.2204 29.628 < 2e-16 ***
age -1.0564 0.1351 -7.818 6.47e-13 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.41 on 162 degrees of freedom
Multiple R-squared: 0.2739, Adjusted R-squared: 0.2694
F-statistic: 61.12 on 1 and 162 DF, p-value: 6.469e-13

Regardless of how we get it, an interpretation of the model would be “using a linear model,
age accounts for approximately 27% of the variability in maximum heart rate”.
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5.3 Analysis of Variance (ANOVA) in Regression

In simple linear regression we discussed the hypothesis test for the slope (and intercept).

𝐻0 ∶ 𝛽1 = 0

• Essentially, null hypothesis posits that x variable is useless as predictor of y

𝐻1 ∶ 𝛽1 ≠ 0

In essence we are testing to see if the 𝑥 variable is a worthwhile predictor.

This test was done via the test statistic

𝑡 =
̂𝛽1

𝑆𝐸 ̂𝛽1

.

The 𝑡 distribution with 𝑛 − 2 degrees of freedom is used to compute the 𝑝-value for this
hypothesis test.

5.3.1 Degrees of Freedom

• 𝑆𝑆𝑅 has 1 degree of freedom.

• 𝑆𝑆𝐸 has 𝑛 − 2 degrees of freedom.

• Overall, 𝑆𝑆𝑇 𝑂 has 𝑛 − 1 degrees of freedom.

5.3.2 Mean Squares and the Test Statistic

However, in regression analysis, we are mainly interested in the mean square of regression
𝑀𝑆𝑅 and mean squared error.

A mean square is the sum of square divided by its degrees of freedom.

• 𝑀𝑆𝑅 = 𝑆𝑆𝑅
1

84



• 𝑀𝑆𝐸 = 𝑆𝑆𝐸 ÷ (𝑛 − 2)

We take their ratio, which is our new test statistic.

𝐹𝑡 = 𝑀𝑆𝑅
𝑀𝑆𝐸 = 𝑆𝑆𝑅

1 ÷ 𝑆𝑆𝐸
𝑛−2

F-test under 𝐻0

𝐻0 → 𝐹𝑡 ∼ 𝐹(1, 𝑛 − 2)
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5.3.3 F-Distribution

The 𝑝-value is the probability of a random value from an 𝐹(1, 𝑛 − 2) distribution exceeding
the test statistic: 𝑝 = 𝑃 (𝐹(1, 𝑛 − 2) > 𝐹𝑡).
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library(ggdist)
library(distributional)

dist_df = data.frame(
d = dist_f(1,18)

)

dist_df %>%
ggplot(aes(xdist = d)) +
stat_slab(color = "grey", expand = TRUE,

aes(fill = after_stat(level)),
.width = c(.95,1))+

stat_spike(at = function(x) hdci(x, .width = .975),
linetype = "dashed")+

# need shared thickness scale so that stat_slab and geom_spike line up
scale_thickness_shared() +
theme_void() +

scale_fill_brewer(na.value = "gray95") +
labs(fill = "Rejection Region on F-distribution",

caption = "F distribution with 1 and 18 degrees of freedom") +
theme(legend.position = "none")

F distribution with 1 and 18 degrees of freedom

87



5.3.4 ANOVA Table

We would in general summarise a Analysis of Variance based hypothesis test with the following
ANOVA table.

Source of
Variability

Sum of
Squares df MS F p-value

Regression/Model 𝑆𝑆𝑅 1 𝑀𝑆𝑅 =
𝑆𝑆𝑅/1

𝐹𝑡 =
𝑀𝑆𝑅/𝑀𝑆𝐸

𝑝

Error 𝑆𝑆𝐸 𝑛 − 2 𝑆𝑆𝐸/(𝑛 − 2)
Total 𝑆𝑆𝑇 𝑂 𝑛 − 1

5.3.5 Regression ANOVA in R

The ANOVA hypothesis test information is shown in the last row of the summary of an lm.

nD.lm.sum

Call:
lm(formula = maxHR ~ age, data = noDisease)

Residuals:
Min 1Q Median 3Q Max

-54.545 -7.782 2.524 10.004 31.624

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 213.9282 7.2204 29.628 < 2e-16 ***
age -1.0564 0.1351 -7.818 6.47e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.41 on 162 degrees of freedom
Multiple R-squared: 0.2739, Adjusted R-squared: 0.2694
F-statistic: 61.12 on 1 and 162 DF, p-value: 6.469e-13

anova(nD.lm)
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Analysis of Variance Table

Response: maxHR
Df Sum Sq Mean Sq F value Pr(>F)

age 1 16458 16457.7 61.115 6.469e-13 ***
Residuals 162 43625 269.3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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5.4 Model Error: 𝜎𝜖

This is the linear model for each value 𝑦 value in a random sample:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

Where of particular note, we have

variability:

𝜖𝑖 ∼ 𝑁(0, 𝜎𝜖)

𝜎̂𝜖 =
√

𝑀𝑆𝐸

5.4.1 Standard Error of ̂𝛽1 and ̂𝛽0

𝑆𝐸𝛽0
= 𝜎̂𝜖√

1
𝑛 + 𝑥2

∑(𝑥𝑖 − 𝑥)2

𝑆𝐸𝛽1
= 𝜎̂𝜖√

1
∑(𝑥𝑖 − 𝑥)2

5.4.2 Standard Error for the Line

We use the equation

̂𝑦 = ̂𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥

How uncertain are we estimating the mean, or making predictions?
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5.4.2.1 Estimated Conditional Mean

When estimating 𝜇𝑦|𝑥 at a given value of 𝑥, the standard error is:

𝑆𝐸𝜇̂𝑦|𝑥
= 𝜎̂𝜖√

1
𝑛 + (𝑥 − 𝑥)2

∑(𝑥𝑖 − 𝑥)2

This is the counterpart to what you did in your introductory course when just estimating the
mean of 𝑦 (𝜇) without considering an 𝑥 variable.

𝑆𝐸 ̄𝑦 = 𝑠√𝑛
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5.4.2.2 Standard Error of Predictions

𝑆𝐸𝑝𝑟𝑒𝑑 = 𝜎̂𝜖√1 + 1
𝑛 + (𝑥 − 𝑥)2

∑(𝑥𝑖 − 𝑥)2

5.4.3 Confidence Intervals for the Mean

We can use our data and compute an estimated value for the line:

̂𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥

We can create confidence intervals for this estimate using the 𝑡-distributiuon with 𝑛−2 degrees
of freedom.

̂𝜇𝑦|𝑥 + 𝑡𝛼/2,𝑑𝑓 ⋅ 𝑆𝐸𝜇̂𝑦|𝑥
= ̂𝜇𝑦|𝑥 ± 𝑡𝛼/2,𝑛−2𝜎̂𝜖√

1
𝑛 + (𝑥 − 𝑥)2

∑(𝑥𝑖 − 𝑥)2

This interval tells us that we can be (1 − 𝛼)100% confident that the true line at a given point
𝑥 is between the lower and upper bound.

5.4.4 Prediction Intervals for Future Observations

In a similar manner, we can create confidence intervals that will let us be (1−𝛼)100% confident
that a future observation will be between

̂𝑦 ± 𝑡𝛼/2,𝑛−2𝑆𝐸𝑝𝑟𝑒𝑑 = ̂𝑦 ± 𝑡𝛼/2,𝑛−2𝜎̂𝜖√1 + 1
𝑛 + (𝑥 − 𝑥)2

∑(𝑥𝑖 − 𝑥)2
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5.4.5 Getting Confidence and Prediction Intervals in R

For confidence and prediction intervals, we can use the predict(). The arguments we need
to define are interval and level.

• interval can be set to “none”, “confidence”, and “prediction” for no interval, a confi-
dence interval for the mean, and a future observation prediction interval, respectively

• level is simply the confidence level of your interval. The default is 0.95.

# need the data for predictions

predData <- data.frame(age = c(20, 30, 40, 50, 60, 70, 80))

confIntervals <- predict(nD.lm, newdata = predData, interval = "confidence", level = 0.99)
predIntervals <- predict(nD.lm, newdata = predData, interval = "prediction", level = 0.99)

Confidence Intervals:

confIntervals

fit lwr upr
1 192.8006 180.8474 204.7537
2 182.2368 173.6092 190.8644
3 171.6730 166.1228 177.2232
4 161.1092 157.6473 164.5711
5 150.5454 146.3056 154.7852
6 139.9816 132.9975 146.9657
7 129.4178 119.2006 139.6349

Prediction Intervals:

predIntervals

fit lwr upr
1 192.8006 148.38873 237.2125
2 182.2368 138.60227 225.8713
3 171.6730 128.54132 214.8046
4 161.1092 118.19624 204.0221
5 150.5454 107.56269 193.5281
6 139.9816 96.64206 183.3211
7 129.4178 85.44134 173.3942
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5.4.6 Graph of Confidence Intervals and Prediction Intervals

# without giving predict() new data,
# you get predictions for ALL points in the data
predictions <- predict(nD.lm,

interval = "prediction",
level = 0.99)

# combin prediction intervals with dataset
allData <- cbind(noDisease, predictions)

# graph
#define x and y axis variables
ggplot(allData, aes(x = age, y = maxHR)) +
geom_point() + #add scatterplot points
stat_smooth(method = lm, level = 0.99) + #confidence bands
geom_line(aes(y = lwr), col = "red",

linetype = "dashed") + #lwr pred interval
geom_line(aes(y = upr), col = "red",

linetype = "dashed") #upr pred interval
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Blue is estimated line, gray is possibilities for true line, and red is a range possible future
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observations.

5.4.7 Important Note: Confidence Levels and Their Reliability.

The confidence level for a confidence/prediction interval only applies to that individual inter-
val.
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5.5 Working-Hotelling Confidence:

The calculation of confidence and prediction bands if fairly simple. You just have to replace
the critical 𝑡 value used to create the confidence and prediction interval. This replacement is
based off of a modification of values from the F-Distribution.

This value will be referred to is as 𝑊𝛼. It requires a value from the 𝐹 distribution with 2
degrees of freedom for the numerator, and 𝑛 − 2 for the denominator. This value on the 𝐹
distribution is such that it has a left-tail area/probability of 1 − 𝛼.

𝑊𝛼 = √2 ⋅ 𝐹(1 − 𝛼, 2, 𝑛 − 2)

5.5.1 Working-Hotelling Confidence Bands

To compute the confidence bands, the formula is:

̂𝑦 ± 𝑡𝛼/2,𝑛−2 ⋅ 𝑆𝐸𝑝𝑟𝑒𝑑 = ̂𝑦 ± 𝑊𝛼√1 + 1
𝑛 + (𝑥 − 𝑥)2

∑(𝑥𝑖 − 𝑥)2

5.5.2 Working-Hotelling Prediction Bands Bands

Similarly for the prediction intervals.

̂𝑦 ± 𝑡𝛼/2,𝑛−2𝑆𝐸𝑝𝑟𝑒𝑑 = ̂𝑦 ± 𝑊𝛼𝜎̂𝜖√1 + 1
𝑛 + (𝑥 − 𝑥)2

∑(𝑥𝑖 − 𝑥)2
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5.5.3 Getting These in R

Apparently I need to make my own R functions for this.

working_hotelling_intervals <- function(x, y) {
y <- as.matrix(y)
x <- as.matrix(x)
n <- length(y)

# Get the fitted values of the linear model
fit <- lm(y ~ x)
fit <- fit$fitted.values

# Find standard error as defined above
se <- sqrt(sum((y - fit)^2) / (n - 2)) *

sqrt(1 / n + (x - mean(x))^2 /
sum((x - mean(x))^2))

# Calculate B and W statistics for both procedures.
W <- sqrt(2 * qf(p = 0.95, df1 = 2, df2 = n - 2))
B <- 1-qt(.95/(2 * 3), n - 1)

# Compute the simultaneous confidence intervals

# Working-Hotelling
wh.upper <- fit + W * se
wh.lower <- fit - W * se

xy <- data.frame(cbind(x,y))

# Plot the Working-Hotelling intervals
wh <- ggplot(xy, aes(x=x, y=y)) +

geom_point(size=2.5) +
geom_line(aes(y=fit, x=x), size=1) +
geom_line(aes(x=x, y=wh.upper),

colour='blue', linetype='dashed') +
geom_line(aes(x=x, wh.lower),

colour='blue', linetype='dashed') +
labs(title='Working-Hotelling')

return(wh)
}
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working_hotelling_intervals(x = noDisease$age, y = noDisease$maxHR)
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Working−Hotelling

# compare with ggplot
#
ggplot(noDisease,

aes(x=age,
y=maxHR)) +

geom_point(alpha = .5) +
geom_smooth(method = "lm",

formula = y~x,
se = TRUE)
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6 Residual Diagnostics

We will expand on these regression topics some when we move on to multiple regression.

Here are some code chunks that setup this document.

# Here are the libraries I used
library(tidyverse)
library(knitr)
library(readr)
library(ggpubr)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())

beer <- read.csv(here::here("datasets",
"beer.csv"))

beers.lm <- lm(Calories ~ ABV, beer)
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6.1 Validating the Model and Statistical Inference: The Residuals

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖

𝜖 ∼ 𝑁(0, 𝜎)
There are assumptions that this model implies:

1. The error terms are normally distributed.

2. The error terms for all observation have a mean of zero which implies the model is
unbiased,i.e, there is truly and only a linear relationship between 𝑥 and 𝑦.

3. The error terms have the same/constant standard deviation/variability that does not
depend on where we look at along the line. This is referred to as homogeneity of variance.

4. A required assumption is that the error terms of the observations are all independent of
each other.

ggplot(beer,
aes(x=ABV,y=Calories)) + geom_point() +

geom_smooth(method = "lm",
formula = y~x)
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6.2 Residuals

We estimate the error using what are referred to as residuals:

𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖 = 𝑦𝑖 − (𝛽0 + 𝛽𝑖𝑥𝑖)

• 𝑦𝑖 is observed value of y
• ̂𝑦𝑖 is “fitted” value of y
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summary(beers.lm)

Call:
lm(formula = Calories ~ ABV, data = beer)

Residuals:
Min 1Q Median 3Q Max

-40.738 -13.952 1.692 10.848 54.268

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.2464 4.7262 1.745 0.0824 .
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ABV 28.2485 0.8857 31.893 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.48 on 224 degrees of freedom
Multiple R-squared: 0.8195, Adjusted R-squared: 0.8187
F-statistic: 1017 on 1 and 224 DF, p-value: < 2.2e-16
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6.3 Checking Normality

You can use beers.lm in ggplot(). Use .resid for the variable you want to graph.

# The histogram function needs you
# to tell it how many bins you want.

ggplot(beers.lm, aes(x = .resid)) +
geom_histogram(bins = 15,

color = "black", fill = "white")
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6.3.1 QQ-Plots (QQ stands for QuantileQuantile)

Quantile-Quantile Plot or Probability Plot:

1. Order the residuals: 𝑒(1), 𝑒(2), ..., 𝑒(𝑛)

• The parentheses in the denominator indicate that the values are ordered from 1st to last
in terms of least to greatest.

• 𝑒(1) is the minimum, 𝑒(𝑛) is the maximum and then there is everything in between.

2. Find 𝑧 values from the standard normal distribution that match the following:

𝑃(𝑍 ≤ 𝑧(𝑖)) = 3𝑖 − 1
3𝑛 − 1

3. Plot the 𝑒(𝑖) values against the 𝑧(𝑖) values. You should see a straight line.

6.3.1.1 Good normal QQ-plot:
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6.3.1.2 Bad plots:
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6.3.1.3 Beer QQ Plot

ggplot(beers.lm, aes(sample = .resid)) +
stat_qq() + stat_qq_line()
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Things for the most part look good.

• There is some deviation at the tails, but that’s expected.
• Essentially there is not much of a pattern to the deviation from the line except for the

tails.
• This is honestly pretty ideal and somewhat rare for what we would see in the real world.

6.3.2 Hypothesis Tests for Normality

The hypotheses are:

𝐻0 ∶ Data are normally distributed 𝐻1 ∶ Data are not normally distributed.

One such test is the Shapiro-Wilk Test which should only be used on model residuals
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shapiro.test(beers.lm$residuals)

Shapiro-Wilk normality test

data: beers.lm$residuals
W = 0.98379, p-value = 0.01097
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6.4 Residual Plots for Assessing Bias and Variance Homogeneity

Residual plots are where we plot the residuals on the vertical axis (y-axis) and the fitted values
or observed 𝑥𝑖 values from the data on the horizontal (x-axis).

We can use beers.lm in ggplot().

• .fitted can be used for the fitted values variable.
• .resid can be used for the residuals values variable.

ggplot(beers.lm, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_smooth(method = "lm")
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6.4.1 Premise of Residual Plots

• This is a way to assess whether the mean of the residuals is consistently zero across the
regression line.

– This is checking whether the model is biased or not.
– If we see some sort of pattern where the residuals change direction, that means the

data do not follow a linear pattern.
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• It also lets us assess whether the variaibility is constant.

– The residuals should form a pattern with equal vertical dispersion throughout.
– If we see a pattern of increasing or decreasing spread, then the constant variance

(homogeneity/homoskedasticity) assumption is violated.

• In general, you are look for randomly scattered points with no patterns whatsoever.

• The residual plot should form basically a circle or ellipse.
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6.4.2 Good Residual Plots
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The plots are centered at zero across there isn’t much to say the variability is not constant
across the whole plot.
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6.4.3 Bad Residual Plots
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• Top left plot shows increasing variability but mean of 0. Unbiased and heterogeneous
variance.

• Top right show increasing variability AND mean of not 0 consistently. Biased and het-
erogeneous variance.

• Bottom left shows the mean not being consistently 0. Biased but homogeneous variance.
• Bottom right shows a definite curvature and potential outliers.
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6.4.3.1 Beer Data Residual Plots

Let’s look at our beer data residual plots.

ggplot(beers.lm, aes(x = .fitted, y =.resid)) +
geom_point() +
geom_smooth(method = "lm")

−40

−20

0

20

40

100 200 300
.fitted

.r
es

id

This plot looks mostly fine. There are a few points that stick out on the far right and far left.
The most peculiar one is in the top left.

It has the smallest fitted value, so let’s pull that one out.

Calories Beer ABV
70 O’Doul’s 0.4

O’Douls is a “non-alcoholic” beer. It may not be considered representative of our data. We
could justify removing it from the data we are analyzing if our objective is analyze “alcoholic”
beverages.
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6.5 Outliers

Outliers are values that separate themselves from the rest of the data in some “significant
way”.

• How do we decide what is, and what is not an outlier.

standardized residuals:

𝑧𝑖 = 𝑒𝑖
𝜎̂𝜖

= 𝑦𝑖 − ̂𝑦
𝜎̂𝜖

studentized residuals:

𝑧∗
𝑖 = 𝑒𝑖

𝜎̂𝜖√1 − ℎ𝑖

ℎ𝑖 is a measure of “leverage”. Leverage is a measure of how extreme a value is in terms of
the predictor variable. It indicates the possibility that the outlier could strong influence the
estimated regression line.

Sometimes, we use the square root of the standardized/studentized residuals, √|𝑧𝑖|, to deter-
mine outliers. Then we would be looking for values that exceed

√
3 ≈ 1.7.

6.6 Alternative Way to Get Residual Diagnostics Graphs

There is a library called ggfortify which has a function that creates some useful plots. It is
the autoplot() function.

This function only requires your lm model as an input to work. We’ll do this on the original
model.

library(ggfortify)

autoplot(beers.lm)
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• The scale-location plot is a plot of the square root of the standardized/studentized resid-
uals versus the fitted values.

• The residuals versus leverage plot. Leverage is essentially a measure of how much po-
tential an observation has for causing a significant change in the line. If an outlier has
relatively high leverage, it may be having a large enough impact on the fitted line, that
the line is less accurate because of the outlier.

• autoplot() automatically labels which observations you may want to consider investi-
gating by tagging observations with which row, numerically, it is in the data.

There is also the performance and see R packages that can be help in checking models.

library(performance)
library(see)

# Test
check_outliers(beers.lm, method = "cook")

OK: No outliers detected.
- Based on the following method and threshold: cook (0.7).
- For variable: (Whole model)
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# plot
plot(check_outliers(beers.lm))
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6.7 Getting Outliers from the Data.

data[rows,columns] * Specify the number(s) for which row(s) you want. Leave blank if you
want to see all rows. * Specify the number(s) which column(s) you want. Leave blank if you
want to see all columns.

Remember, each row in the dataset is a beer. We want to specify just the rows so we can see
all the information about each beer we are checking.

# Store the indicated outlier numbers as a vector.

outlierRows <- c(198, 218, 226, 5, 224)

beer[outlierRows, ]

Calories Beer ABV
198 195 Sam Adams Cream Stout 4.69
218 225 Sierra Nevada Stout 5.80
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226 330 Sierra Nevada Bigfoot 9.60
5 70 O'Doul's 0.40
224 313 Flying Dog Double Dog\xe5\xca 11.50

Maybe there is a pattern here. Maybe these observations should be omitted? If we omit
observations, we reduce the generalizability of the model. Generalizability is the ability
for a model to apply to a greater population and future predictions.
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6.7.1 New Model Without O’Doul’s

Remove outlier(s):

• Make a new model.

• New residuals check.

• Compare to previous model.

beer2 <- filter(beer, Beer != "O'Doul's")

beer2.lm <- lm(Calories ~ ABV, beer2)

summary(beer2.lm)

Call:
lm(formula = Calories ~ ABV, data = beer2)

Residuals:
Min 1Q Median 3Q Max

-41.046 -14.277 1.753 11.081 54.824

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5978 4.7950 0.959 0.339
ABV 28.9080 0.8966 32.241 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.17 on 223 degrees of freedom
Multiple R-squared: 0.8234, Adjusted R-squared: 0.8226
F-statistic: 1039 on 1 and 223 DF, p-value: < 2.2e-16

118



autoplot(beer2.lm)
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6.8 Specifics of Residual Plots in Simple Linear Regression

One thing to note is that residual plots in simple linear regression are somewhat redundant.

Left: ABV versus Calories

Right: fitted versus residuals

Can you spot the difference? (Besides scale.)
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6.8.1 Fitted versus Observed

Another alternative plot is that of actual versus predicted.

• Actual 𝑦 values on one axis.
• Predicted ̂𝑦 values on the other axis.

You are looking for a 45 degree line with constant dispersion around the line throughout.

Here it is for the beer data.

ggplot(beers.lm, aes(x = Calories, y = .fitted)) +
geom_abline(slope = 1,

color = "royalblue", size = 1) +
geom_point()
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6.8.2 General Model Checks

The R see package can also be used to create a general plots for model assumptions

check_model(beers.lm)
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7 Transformations

Here are some code chunks that setup this chapter.

# Here are the libraries I used
library(tidyverse) # standard
library(knitr) # need for a couple things to make knitted document to look nice
library(readr) # need to read in data
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())

Again our model is

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖

where 𝜖 ∼ 𝑁(0, 𝜎).

𝑥 → 𝑔(𝑥)

ℎ(𝑦) = 𝛽0 + 𝛽1𝑔(𝑥) + 𝜖

𝑦 → ℎ(𝑦)
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7.1 Not all relations are linear

You’ll have to forgive me for a non-biostatistics example, but it exemplifies what I want to
discuss in a simple and easily understandable way (I think).

We’re going to take a look at some cars.

cars <- read_csv(here::here("datasets",
'cars04.csv'))

Rows: 428 Columns: 14
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Name, Type, Drive
dbl (11): MSRP, Dealer, Engine, Cyl, HP, CMPG, HMPG, Weight, WheelBase, Leng...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Several variables to examine, but we’ll just parse it down to looking at the relation between the
Weight of vehicles and their fuel efficiency in terms of Miles Per Gallon (MPG). CMPG is the typ-
ical MPG in a city environment, and HMPG is the tyical MPG on highways/interstates/non-
stop-and-go driving.
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7.1.1 Correlations

# I am using arguments in the second stat_cor to change the location of the text
# This is so that the two correlations don't overlap.
ggplot(cars, aes(x = Weight, y = CMPG)) +
geom_point() +
geom_smooth(method = "lm", formula = y~x) +
stat_cor(method = "pearson") +
stat_cor(method = "kendall", label.y = 55, color = "blue")

R = − 0.74, p < 2.2e−16
R = − 0.71, p < 2.2e−16
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The relation is fairly strong, but does not appear linear. There seems to be a curve to it. The
linear model plotted is biased. This means that at some points we expect values to fall below
the line more often than not. And other places, we expect the values to fall above the line.
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7.1.2 Residuals

This would be reflected residual diagnostics.

carsLm <- lm(CMPG ~ Weight, cars)
autoplot(carsLm)
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Typically we want to force the data into a linear pattern.
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7.1.3 Transformations for Non-linear Relationships

The following plots show several non-linear relationships. With each scatterplot there is the
correct transformation for the 𝑥 variable.

7.1.3.1 log(𝑥) and
√𝑥

y = log(x) + ε y = x + ε
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7.1.3.2 𝑥2 or 𝑒𝑥 (sometimes 𝑒𝑥 is denoted by exp(𝑥))

y = ex + ε y = x2 + ε
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7.1.3.3 1/𝑥 or 𝑒−𝑥 (or exp(−𝑥))

y = 1 x + ε y = e−x + ε

These are just guidelines for which transformations may help. Sometimes the transformations
the other transformations may be appropriate because the relationship is flipped by a negative
sign.
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7.1.3.4 Sometimes things look one way and are another

Here is a graph of the model 𝑦 = − 1
𝑥 + 𝜖

y = − 1 x + ε
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7.1.3.5 Trying log(𝑥) or
√𝑥

Here are side by side graphs of the original data and transforming the 𝑥 variable using log(𝑥),√𝑥, and 1/𝑥.

Original Data: y = − 1 x + ε log(x) Transformation

x Transformation 1 x Transformation

It is important that you try several transformations before giving up on a linear regression
model.
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7.1.4 Applying a transformation to the cars dataset

p1 <- ggplot(cars, aes(x = Weight, y = CMPG)) +
geom_point() +
geom_smooth(method = "lm")

p2 <- ggplot(cars, aes(x = 1/Weight, y = CMPG)) +
geom_point() +
geom_smooth(method = "lm")

grid.arrange(p1,p2, nrow = 1)
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7.1.4.1 Transformations in lm()

When performing transformation in linear models, those can be done within the lm() function.
Instead of lm(y ~ x, data), you can put lm(y ~ I(g(x)), data).

• g(x) is whatever transformation on the 𝑥 variable you are trying.

• I() is an R syntax thing that is needed sometimes so that the function g(x) is interpreted
correctly.

• Though I() is not always necessary, it is best practice to use it every time you re
performing a transformation.

Our function is 1/Weight, so we would write for the formula, y ~ I(1/Weight). In this case,
is is necessary to use I(). Try summarising a model where the formula is

carsLm2 <- lm(CMPG ~ I(1/Weight), cars)
summary(carsLm2)

Call:
lm(formula = CMPG ~ I(1/Weight), data = cars)

Residuals:
Min 1Q Median 3Q Max

-6.088 -1.302 0.069 1.040 35.073

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5651 0.7629 -0.741 0.459
I(1/Weight) 70.7812 2.5606 27.642 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.09 on 410 degrees of freedom
(16 observations deleted due to missingness)

Multiple R-squared: 0.6508, Adjusted R-squared: 0.6499
F-statistic: 764.1 on 1 and 410 DF, p-value: < 2.2e-16
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7.1.4.2 Residuals

autoplot(carsLm2)
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7.2 “Stabilizing” Variability

Sometimes the standard deviation of the residuals is constant on a relative scale.

𝐶𝑉 = 𝜎𝜖
|𝜇𝑦|𝑥|

The log is typical the transformation used in this situation.

log(𝑦) = 𝛽0 + 𝛽1𝑥 + 𝜖 ⟺ 𝑦 = 𝑒𝛽0+𝛽1𝑥+𝜖

Other possibilities would be taking the square root (or higher power root) of the 𝑦 variable,
but most often it is log that works best if a 𝑦 transformation is viable.
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7.2.1 Log of cars data

There are many potential models. We have to account for non-linearity and the variability
issue.

p1 <- ggplot(cars, aes(x = Weight, y = CMPG)) +
geom_point() +
geom_smooth() +
labs(title = expression(paste("No Transformation"))) #expression() lets me show math

p2 <- ggplot(cars, aes(x = Weight, y = log(CMPG))) +
geom_point() +
geom_smooth() +
labs(title = expression(paste(log(y), " Transformation"))) #expression() lets me show math

p3 <- ggplot(cars, aes(x = 1/Weight, y = CMPG)) +
geom_point() +
geom_smooth() +
labs(title = expression(paste(1/x, " Transformation"))) #expression() lets me show math

p4 <- ggplot(cars, aes(x = 1/Weight, y = log(CMPG))) +
geom_point() +
geom_smooth() +
labs(title = expression(paste(log(y), " and ", 1/x, "Transformations"))) #expression() lets me show math

grid.arrange(p1,p2,p3,p4)
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7.2.1.1 Linear Model

carsLm3 <- lm(log(CMPG) ~ I(1/(Weight)), data = cars)

summary(carsLm3)

Call:
lm(formula = log(CMPG) ~ I(1/(Weight)), data = cars)

Residuals:
Min 1Q Median 3Q Max

-0.25328 -0.05547 0.00506 0.05825 0.92912

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.03375 0.02710 75.06 <2e-16 ***
I(1/(Weight)) 3.22138 0.09094 35.42 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1098 on 410 degrees of freedom
(16 observations deleted due to missingness)

Multiple R-squared: 0.7537, Adjusted R-squared: 0.7531
F-statistic: 1255 on 1 and 410 DF, p-value: < 2.2e-16

carsLm3 <- lm(log(CMPG) ~ I(1/(Weight)), data = cars)

summary(carsLm3)

Call:
lm(formula = log(CMPG) ~ I(1/(Weight)), data = cars)

Residuals:
Min 1Q Median 3Q Max

-0.25328 -0.05547 0.00506 0.05825 0.92912

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.03375 0.02710 75.06 <2e-16 ***
I(1/(Weight)) 3.22138 0.09094 35.42 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1098 on 410 degrees of freedom
(16 observations deleted due to missingness)

Multiple R-squared: 0.7537, Adjusted R-squared: 0.7531
F-statistic: 1255 on 1 and 410 DF, p-value: < 2.2e-16

So
̂log(𝐶𝑀𝑃𝐺) = 2.03 + 3.22 1

𝑊𝑒𝑖𝑔ℎ𝑡
is our estimated regression line.
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7.2.1.2 Residuals

autoplot(carsLm3)
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7.2.1.3 Outliers

outliers <- c(94, 69, 97, 70)

cars[outliers, ]

# A tibble: 4 x 14
Name Type Drive MSRP Dealer Engine Cyl HP CMPG HMPG Weight WheelBase
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Toyo~ Car FWD 20510 18926 1.5 4 110 59 51 2.89 106
2 Hond~ Car FWD 20140 18451 1.4 4 93 46 51 2.73 103
3 Volk~ Car FWD 21055 19638 1.9 4 100 38 46 3.00 99
4 Hond~ Car FWD 19110 17911 2 3 73 60 66 1.85 95
# i 2 more variables: Length <dbl>, Width <dbl>

filter(cars, Weight < 2.1)

# A tibble: 4 x 14
Name Type Drive MSRP Dealer Engine Cyl HP CMPG HMPG Weight WheelBase
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Toyo~ Car FWD 10760 10144 1.5 4 108 35 43 2.04 93
2 Toyo~ Car FWD 11560 10896 1.5 4 108 33 39 2.08 93
3 Toyo~ Car FWD 11290 10642 1.5 4 108 35 43 2.06 93
4 Hond~ Car FWD 19110 17911 2 3 73 60 66 1.85 95
# i 2 more variables: Length <dbl>, Width <dbl>

removeOutliers <- c(94, 69, 70)

cars2 <- cars[-removeOutliers, ]

7.2.1.4 Removing outliers and new model

carsLm4 <- lm(log(CMPG) ~ I(1/Weight), cars2)

summary(carsLm4)
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Call:
lm(formula = log(CMPG) ~ I(1/Weight), data = cars2)

Residuals:
Min 1Q Median 3Q Max

-0.25752 -0.05228 0.00710 0.05943 0.54103

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.06635 0.02359 87.60 <2e-16 ***
I(1/Weight) 3.09371 0.07948 38.92 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09357 on 407 degrees of freedom
(16 observations deleted due to missingness)

Multiple R-squared: 0.7882, Adjusted R-squared: 0.7877
F-statistic: 1515 on 1 and 407 DF, p-value: < 2.2e-16

Compare to model with outliers.
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7.2.1.5 Checking residuals AGAIN

autoplot(carsLm4)
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7.3 You’ve got a linear model, now what

̂log(𝐶𝑀𝑃 𝐺) = 2.03 + 3.22 1
𝑊𝑒𝑖𝑔ℎ𝑡 ⟺ ̂𝐶𝑀𝑃𝐺 = 𝑒2.03+3.22 1

𝑊𝑒𝑖𝑔ℎ𝑡

7.3.1 Interpreting you coefficients

We’ve got this model. How would we explain what it says?

̂log(𝐶𝑀𝑃𝐺) = 2.03 + 3.22 1
𝑊𝑒𝑖𝑔ℎ𝑡

This means we are looking at how 1/𝑊𝑒𝑖𝑔ℎ𝑡 affects the relative change of 𝐶𝑀𝑃𝐺. What does
that mean?

Say you were to look at the average weight of cars that weighed 𝑑 thousand pounds more. The
change in log of CMPG is

Δ log(𝐶𝑀𝑃𝐺) = 3.22
𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑑 − 3.22

𝑊𝑒𝑖𝑔ℎ𝑡 = −3.22𝑑
𝑊𝑒𝑖𝑔ℎ𝑡2 + 𝑑 ⋅ 𝑊𝑒𝑖𝑔ℎ𝑡

Using math “magic”.

𝐶𝑀𝑃𝐺𝑑 = 𝐶𝑀𝑃𝐺0 ⋅ 𝑒
−3.22𝑑

𝑊𝑒𝑖𝑔ℎ𝑡2+𝑑⋅𝑊𝑒𝑖𝑔ℎ𝑡

In terms of viewing the model as ̂𝐶𝑀𝑃𝐺 = 𝑒2.03+3.22 1
𝑊𝑒𝑖𝑔ℎ𝑡 the change in 𝐶𝑀𝑃𝐺 would be

Δ ̂𝐶𝑀𝑃𝐺 = (𝑒2.03+3.22 1
𝑊𝑒𝑖𝑔ℎ𝑡 ) − (𝑒2.03+3.22 1

𝑊𝑒𝑖𝑔ℎ𝑡+𝑑 )

I don’t know about this form either.
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7.3.2 Predictions from transformations

You create a data.frame that contains the values of the predictor variable that you want
predictions for, and then plug them into the predict() function.

newdata <- data.frame(Weight = c(1.5, 2, 2.5, 3, 3.5, 4))

predictions <- predict(carsLm4, newdata)

Now let’s look at those predictions.

predictions

1 2 3 4 5 6
4.128824 3.613205 3.303834 3.097587 2.950267 2.839777

There’s an issue here. These are the predictions for log(𝐶𝑀𝑃𝐺), not CMPG. You have to
use the reverse function on the predictions. In this case, log(y) takes the natural log of 𝑦.
Therefore, your reverse function is 𝑒𝑦 using exp(y).

exp(predictions)

1 2 3 4 5 6
62.10485 37.08473 27.21679 22.14445 19.11106 17.11196

7.3.2.1 Confidence and Interval Intervals

Likewise, if you wanted confidence intervals for the mean, or prediction intervals for future
observations, you would specify an interval = "confidence" or interval = "prediction"
argument and a level argument specifying the desired confidence level for your intervals. AND
you need to apply the reverse function.

CIs <- predict(carsLm4, newdata, interval = "confidence", level = 0.99)

PIs <- predict(carsLm4, newdata, interval = "prediction", level = 0.99)

Here are the 99% confidence intervals.
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exp(CIs)

fit lwr upr
1 62.10485 57.43392 67.15565
2 37.08473 35.46636 38.77696
3 27.21679 26.53386 27.91730
4 22.14445 21.81908 22.47467
5 19.11106 18.88265 19.34223
6 17.11196 16.86310 17.36448

And here are the 99% prediction intervals.

exp(PIs)

fit lwr upr
1 62.10485 48.15157 80.10149
2 37.08473 28.99050 47.43889
3 27.21679 21.33490 34.72030
4 22.14445 17.37399 28.22475
5 19.11106 14.99637 24.35473
6 17.11196 13.42575 21.81026

Confidence levels when you apply the reverse transformations are only approximate. Actual
confidence may be higher or lower. Something about this thing called Jensen’s inequality…
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8 Introduction to Multiple Regression

Here are some code chunks that setup this chapter

# Here are the libraries I used
library(tidyverse) # standard
library(knitr) # need for a couple things to make knitted document to look nice
library(readr) # need to read in data
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())
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8.1 SENIC Data

We will now begin the examining data from the Study on the Efficcacy of Nosocomial Infection
Control (SENIC project). The general objective, and therefore project name, was to examine
how effective infection surveillance and control programs were at reducing hopsital acquired
(nosocomial) diseases. Data was obtained through the test Applied Linear Statistical Models
5th edition (Neter et al).

senic <- read_csv(here::here("datasets",
'SENIC.csv'))

• stayLength: Average length of stay of all patients in hospital (in days)
• age: Average age of patients (in years)
• infectionRisk: Average estimated probability of acquiring infection in hospital (in

percent)
• cultureRatio: Ratio of number of cultures performed to number of patients without

signs or symptoms of hospital-acquired infection, times 100
• xrayRatio: Ratio of number of X-rays performed to number of patients , without signs

or symptoms of pneumonia, times 100
• beds: Average number of beds in hospital during study period
• school Med school affiliation (Yes or No)
• region: Geographic region (NE, NC, S, W)
• patients: Average number of patients in hospital per day during study period
• nurses: Average number of full-time equivalent registered and licensed practical nurses

during study period (number full-time plus one half the number part time)
• facilities: Percent of 35 potential facilities and services that are provided by the

hospital
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8.2 Infection Risk

There are a lot of potential variables that may relate to infectionRisk, but let’s just con-
centrate on stayLength and cultureRatio.

#isc ending indicates the variables used:
#(i)nfectionRisk, (s)tayLength, (c)ultureRatio

senicisc <- select(senic, infectionRisk,
stayLength, cultureRatio)

8.2.1 Relation of infectionRisk with stayLength and cultureRatio
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8.2.2 Model with stayLength

Here is the linear regression output for infectionRisk with stayLength.

infStayLm <- lm(infectionRisk ~ stayLength, senicisc)
summary(infStayLm)

Call:
lm(formula = infectionRisk ~ stayLength, data = senicisc)

Residuals:
Min 1Q Median 3Q Max

-2.7823 -0.7039 0.1281 0.6767 2.5859

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.74430 0.55386 1.344 0.182
stayLength 0.37422 0.05632 6.645 1.18e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.139 on 111 degrees of freedom
Multiple R-squared: 0.2846, Adjusted R-squared: 0.2781
F-statistic: 44.15 on 1 and 111 DF, p-value: 1.177e-09

Our regression equation for predicting infectionRisk is:

𝑟𝑖𝑠𝑘 = 0.744 + 0.374 ⋅ 𝑠𝑡𝑎𝑦𝐿𝑒𝑛𝑔𝑡ℎ
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8.2.3 Model with cultureRatio

Here is the linear regression output for infectionRisk with cultureRatio.

infCuLm <- lm(infectionRisk ~ cultureRatio, senicisc)
summary(infCuLm)

Call:
lm(formula = infectionRisk ~ cultureRatio, data = senicisc)

Residuals:
Min 1Q Median 3Q Max

-2.6759 -0.7133 0.1593 0.7966 3.1860

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.19790 0.19377 16.504 < 2e-16 ***
cultureRatio 0.07326 0.01031 7.106 1.22e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.117 on 111 degrees of freedom
Multiple R-squared: 0.3127, Adjusted R-squared: 0.3065
F-statistic: 50.49 on 1 and 111 DF, p-value: 1.218e-10

The regression equation is then:

𝑟𝑖𝑠𝑘 = 3.198 + 0.073 ⋅ 𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑅𝑎𝑡𝑖𝑜
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8.3 Linear Regression with Two Variables

We can “easily” create a model that accounts for a linear relationship between two variables.
If we have one response variable 𝑦 and two predictor variables 𝑥1 and 𝑥2, then the model is:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖

Where we assume that we have error terms 𝜖 ∼ 𝑁(0, 𝜎𝜖) which are independent. An additional
assumption is that the two predictor variables, 𝑥1 and 𝑥2 are independent of each other.

We still have two parts to the model.

• The linear relation/conditional mean 𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
• The error 𝜖

8.4 Model for infectionRisk using two variables

The way to get the estimated regression equation is the same. We just add another variable
into the lm() formula.

riskLm <- lm(infectionRisk ~ stayLength + cultureRatio,
data=senicisc)

summary(riskLm)

Call:
lm(formula = infectionRisk ~ stayLength + cultureRatio, data = senicisc)

Residuals:
Min 1Q Median 3Q Max

-2.1822 -0.7275 0.1040 0.6847 2.7143

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.805491 0.487756 1.651 0.102
stayLength 0.275472 0.052465 5.251 7.46e-07 ***
cultureRatio 0.056451 0.009798 5.761 7.70e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 1.003 on 110 degrees of freedom
Multiple R-squared: 0.4504, Adjusted R-squared: 0.4404
F-statistic: 45.07 on 2 and 110 DF, p-value: 5.04e-15

So our model for estimated risk is

𝑟𝑖𝑠𝑘 = 0.805 + 0.275 ⋅ 𝑠𝑡𝑎𝑦𝐿𝑒𝑛𝑔𝑡ℎ + 0.056 ⋅ 𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑅𝑎𝑡𝑖𝑜

151



8.4.1 Graphing the relationship
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8.4.2 Interpreting the Coefficients

The interpretation, so now we have to figure out to interpret three different estimated coeffi-
cients: ̂𝛽0, ̂𝛽1, ̂𝛽2.

• ̂𝛽0 is the estimated y-intercept. The idea behind the intercept coefficient is similar,
except for now it is ̂𝜇𝑦|𝑥ℎ𝑎𝑡, the estimated mean value of the 𝑦 variable, when both 𝑥1
and 𝑥2 are 0.

• ̂𝛽1 is the amount that ̂𝜇𝑦|𝑥 increases when 𝑥1 increases by 1 unit AND 𝑥2 is constant.

• ̂𝛽2 is the amount that ̂𝜇𝑦|𝑥 increases when 𝑥2 increases by 1 unit AND 𝑥1 is constant.

So for our estimated regression model:

𝑟𝑖𝑠𝑘 = 0.805 + 0.275 ⋅ 𝑠𝑡𝑎𝑦𝐿𝑒𝑛𝑔𝑡ℎ + 0.056 ⋅ 𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑅𝑎𝑡𝑖𝑜

• We estimate that the mean infection risk of hospitals is 0.805% among hospitals with an
average length of stay if 0 days and average culture ratio of 0. (Does this make sense?)

• We estimate that the mean infection risk of hospitals increases by 0.275% among hospitals
with average length of stay 1 day longer, and average culture ratio saying constant.

• We estimate that the mean infection risk of hospitals increases by 0.056% among hospitals
where the average culture ratio rate is 1 unit higher, and average length of stay remains
constant.
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8.5 Inference on the regression coefficients

Just like before, there are several columns for each coefficient. The columns are for the following
hypothesis test.

𝐻0 ∶ 𝛽𝑘 = 0
𝐻1 ∶ 𝛽𝑘 ≠ 0

The test statistic is:

𝑡 =
̂𝛽𝑘

𝑆𝐸 ̂𝛽𝑘

We simple divide our coefficient estimate by its standard error.

The test statistic is assumed to be from a 𝑡 distribution with degrees of freedom 𝑑𝑓 = 𝑛−(𝑝+1).
Where 𝑝 is the total number of predictor variables. And the p-value is the probability of
obtaining

When looking at our model summary we interpret the p-values similarly.

summary(riskLm)

Call:
lm(formula = infectionRisk ~ stayLength + cultureRatio, data = senicisc)

Residuals:
Min 1Q Median 3Q Max

-2.1822 -0.7275 0.1040 0.6847 2.7143

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.805491 0.487756 1.651 0.102
stayLength 0.275472 0.052465 5.251 7.46e-07 ***
cultureRatio 0.056451 0.009798 5.761 7.70e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.003 on 110 degrees of freedom
Multiple R-squared: 0.4504, Adjusted R-squared: 0.4404
F-statistic: 45.07 on 2 and 110 DF, p-value: 5.04e-15
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• There is weak evidence that the true linear model has a non-zero intercept.
• There is extremely strong evidence that there is a linear component in the relationship

between stayLength and infectionRisk (𝑝 < 0.0001) when cultureRatio is included
in the model.

• There is extremely strong evidence that there is a linear component in the relationship
between cultureRatio and infectionRisk (𝑝 < 0.0001) when stayLength is included
in the model.

The test for the intercept is not important (usually). The tests for the slopes are more
important though not terribly so by themselves.
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8.5.1 Confidence Intervals for Coefficients

We can likewise get confidence intervals for the coefficients. They take the general form:

̂𝛽𝑖 ± 𝑡𝛼/2,𝑑𝑓 ⋅ 𝑆𝐸 ̂𝛽𝑖

Again the 𝑡𝛼/2 quantile depends on the value for 𝛼 of the desired nominal confidence level
1 − 𝛼.
To get the confidence intervals we use the confint() function just before.

confint(riskLm, level = 0.99)

0.5 % 99.5 %
(Intercept) -0.4730459 2.08402798
stayLength 0.1379482 0.41299604
cultureRatio 0.0307672 0.08213574

The estimated change in the mean of infectionRisk is:

• From 0.138 to 0.413 at 99% confidence when increasing stayLength by 1 day. (And
keeping cultureRatio constant.)

• From 0.031 to 0.082 at 99% confidence when increasing cultureRatio by 1 (ratios don’t
really have units). (Keeping stayLength constant.)
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8.6 Estimating the Mean/Predicting Future Observations

Getting predictions is similar to before. You use the predict() function, and you need to
specify what values you want predictions for.

You make a data.frame with values for each predictor variable.

• You must specify all variables that are used as predictors.
• Each variable must have the same number of points.
• If you screw this up, you will get predictions for all of the original points in the data.

Lets say you want to predict/estimate infectionRisk for a hospital that have an average
length of stay of 5, 10, and 15 days, and a average culture ratio of 5, 15, 25. But which way
are we combining those?

newdata <- data.frame(stayLength = c(5, 10, 15),
cultureRatio = c(5, 15, 25))

predict(riskLm, newdata)

1 2 3
2.465109 4.406984 6.348859

Or what about?

newdata <- data.frame(stayLength = c(5, 10, 15),
cultureRatio = c(25, 15, 5))

predict(riskLm, newdata)

1 2 3
3.594138 4.406984 5.219830

Or…?

newdata <- data.frame(stayLength = c(15, 5, 10),
cultureRatio = c(15, 25, 5))

predict(riskLm, newdata)

1 2 3
5.784345 3.594138 3.842469

You have to know which exact combination of predictor variable values you want.
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8.6.1 Confidence Intervals for the Mean and Prediction Intervals for Future
Observations

This is the same as well.

• Confidence intervals (CIs) are establishing a range of plausible values for the conditional
mean: 𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥1 + ̂𝛽2𝑥2

• Prediction intervals (PIs) establish a range of plausible values for individual observations:
𝑦 = 𝛽0 + 𝛽1𝑥1 + ̂𝛽2𝑥2 + 𝜖

Let’s make 99% CIs and PIs.

newdata <- data.frame(stayLength = c(15, 5, 10),
cultureRatio = c(15, 25, 5))

CIs <- predict(riskLm, newdata,
interval = "confidence", level = 0.99)

PIs <- predict(riskLm, newdata,
interval = "prediction", level = 0.99)

CIs

fit lwr upr
1 5.784345 5.001363 6.567327
2 3.594138 2.803874 4.384403
3 3.842469 3.456304 4.228635

PIs

fit lwr upr
1 5.784345 3.0409109 8.527779
2 3.594138 0.8486173 6.339659
3 3.842469 1.1849346 6.500004

Interpretations are now relative to the value of both predictors variables.

CI Interpretation: There is 99% confidence that the mean infection risk of hospitals with
average length of stay of 15 days and culture ratio of 15 is between 5.00% to 6.57%.

PI Interpretation: There is 99% confidence that the infection risk of an Individual hospital
with average length of stay of 15 days and culture ratio of 15 is between 3.04% to 8.53%.
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8.7 Residual Analysis

To assess validity of the model assumptions we can examine the residuals in the same manner
as before. Create plots of the residuals using autoplot() and assess them in the same way as
before.

autoplot(riskLm)
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8.8 Adding more variables!

The linear model is not restricted to one or two variables. We can have as many predictor
variables as we want! Let 𝑝 denote the total number of predictor variables we use. The linear
model is now:

𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 + ... + ̂𝛽𝑝 + 𝜖 = 𝛽0 +
𝑝

∑
𝑘=1

𝛽𝑘𝑥𝑘 + 𝜖

8.8.1 facilities and infectionRisk?

Here is a graph between facilities and infectionRisk.

ggplot(senic, aes(x = facilities, y = infectionRisk)) +
geom_point()
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8.8.2 Adding facilities to the infectionRisk model.

riskierLm <- lm(infectionRisk ~ stayLength + cultureRatio + facilities, senic)
summary(riskierLm)

Call:
lm(formula = infectionRisk ~ stayLength + cultureRatio + facilities,

data = senic)

Residuals:
Min 1Q Median 3Q Max

-2.26400 -0.59873 0.01723 0.56650 2.64517

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.491332 0.481636 1.020 0.30992
stayLength 0.223907 0.053366 4.196 5.56e-05 ***
cultureRatio 0.054200 0.009479 5.718 9.55e-08 ***
facilities 0.019630 0.006454 3.042 0.00295 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9674 on 109 degrees of freedom
Multiple R-squared: 0.4934, Adjusted R-squared: 0.4795
F-statistic: 35.39 on 3 and 109 DF, p-value: 4.769e-16
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8.8.3 Remember to always check your residuals!

autoplot(riskierLm)
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8.8.4 The Model Analysis of Variance: Global F-Test

Assuming there are 𝑝 predictor variables

𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0
𝐻1 ∶ At least one 𝛽𝑘 is not 0.
To test this, we use that same breakdown of model variability as before:

𝑆𝑆𝑇 𝑂 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

This variability in the variable can be broken up into two pieces:

𝑆𝑆𝑅 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2 =
𝑛

∑
𝑖=1

( ̂𝜇𝑦|𝑥 − ̂𝜇𝑦)2

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

The two sums of squares combined are the total variability 𝑆𝑆𝑇 𝑂.

𝑆𝑆𝑇 𝑂 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸
The Regression Degrees of Freedom is now 𝑝, the error degrees of freedom is 𝑛 − (𝑝 + 1).
This gives the following mean squares

• Mean Square Regression: 𝑀𝑆𝑅 = 𝑆𝑆𝑅/𝑝
• Mean Square Error: 𝑀𝑆𝐸 = 𝑆𝑆𝐸/[𝑛 − (𝑝 + 1)]

The test statistic is 𝐹𝑡 = 𝑀𝑆𝑅/𝑀𝑆𝐸 and we use the 𝐹(𝑝, 𝑛−(𝑝+1)) distribution to compute
the p-value.

𝐹𝑡 = 𝑆𝑆𝑅 ÷ 𝑝
𝑀𝑆𝐸 = 𝑀𝑆𝑅

𝑀𝑆𝐸
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8.8.5 F-Test for infectionRisk model with 3 predictors

This test is available via the model summary in the very last row.

summary(riskierLm)

Call:
lm(formula = infectionRisk ~ stayLength + cultureRatio + facilities,

data = senic)

Residuals:
Min 1Q Median 3Q Max

-2.26400 -0.59873 0.01723 0.56650 2.64517

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.491332 0.481636 1.020 0.30992
stayLength 0.223907 0.053366 4.196 5.56e-05 ***
cultureRatio 0.054200 0.009479 5.718 9.55e-08 ***
facilities 0.019630 0.006454 3.042 0.00295 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9674 on 109 degrees of freedom
Multiple R-squared: 0.4934, Adjusted R-squared: 0.4795
F-statistic: 35.39 on 3 and 109 DF, p-value: 4.769e-16

Does this really matter? Ask yourself what the null hypothesis would and if it would matter.
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8.8.6 Experiment: What happens to the stayLength slope?

Let’s look at the coefficients for the three models involving stayLength as a predictor.

By itself.

term estimate std.error statistic p.value
(Intercept) 0.7443037 0.5538573 1.343855 0.1817359
stayLength 0.3742169 0.0563195 6.644530 0.0000000

With cultureRatio.

coeff.summary(riskLm)

term estimate std.error statistic p.value
(Intercept) 0.8054910 0.4877558 1.651423 0.1015044
stayLength 0.2754721 0.0524647 5.250615 0.0000007
cultureRatio 0.0564515 0.0097984 5.761279 0.0000001

And finally adding in facilities.

coeff.summary(riskierLm)

term estimate std.error statistic p.value
(Intercept) 0.4913323 0.4816361 1.020132 0.3099249
stayLength 0.2239075 0.0533656 4.195726 0.0000556
cultureRatio 0.0542000 0.0094793 5.717698 0.0000001
facilities 0.0196303 0.0064539 3.041603 0.0029482
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8.9 Transformations

A simple way to check the relationship between the variables would be to use the pairs()
function. The pairs() function produces scatterplots between all variables you specify.

The basic syntax is pairs(formula, data) where formula is the formula of the regression
model you are considering data is the dataset you are using.

pairs(infectionRisk ~ stayLength + cultureRatio + facilities,
senic)

infectionRisk

8
14

2 4 6 8

20
60

8 12 16 20

stayLength

cultureRatio

0 20 40 60

20 40 60 80

2
5

8
0

30
60

facilities

This is a scatterplot matrix. Notice that the vertical axis determined by the variable named
to the left or right of a plot, and horizontal axis is determined by the variable named above
or below a plot.
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8.9.1 Finding the right transformations

pairs(infectionRisk ~ log(stayLength) +
log(cultureRatio) +
facilities, senic)

infectionRisk

2.
0

2.
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8.9.2 Incorporating them into the model

friskyLm <- lm(infectionRisk ~ log(stayLength) +
log(cultureRatio) +
facilities, senic)

summary(friskyLm)

Call:
lm(formula = infectionRisk ~ log(stayLength) + log(cultureRatio) +

facilities, data = senic)

Residuals:
Min 1Q Median 3Q Max

-2.31059 -0.63488 0.04808 0.54228 2.43225

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.255154 1.110040 -3.833 0.000212 ***
log(stayLength) 2.534644 0.540984 4.685 8.12e-06 ***
log(cultureRatio) 0.924657 0.134138 6.893 3.70e-10 ***
facilities 0.012736 0.006254 2.036 0.044147 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9138 on 109 degrees of freedom
Multiple R-squared: 0.548, Adjusted R-squared: 0.5355
F-statistic: 44.05 on 3 and 109 DF, p-value: < 2.2e-16

168



8.9.3 Residuals!

autoplot(friskyLm)
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Then you have to reinterpret everything, and so on and so on.
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8.9.4 Which log?

friskyLm2 <- lm(infectionRisk ~ log2(stayLength) +
log2(cultureRatio) +
facilities, senic)

summary(friskyLm2)

Call:
lm(formula = infectionRisk ~ log2(stayLength) + log2(cultureRatio) +

facilities, data = senic)

Residuals:
Min 1Q Median 3Q Max

-2.31059 -0.63488 0.04808 0.54228 2.43225

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.255154 1.110040 -3.833 0.000212 ***
log2(stayLength) 1.756881 0.374982 4.685 8.12e-06 ***
log2(cultureRatio) 0.640923 0.092977 6.893 3.70e-10 ***
facilities 0.012736 0.006254 2.036 0.044147 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9138 on 109 degrees of freedom
Multiple R-squared: 0.548, Adjusted R-squared: 0.5355
F-statistic: 44.05 on 3 and 109 DF, p-value: < 2.2e-16
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8.9.5 Can you spot the difference in residuals?

autoplot(friskyLm2)
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autoplot(friskyLm)
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9 Variable Selection, Data Reduction, and
Model Comparison

Here are some code chunks that setup this document.

# Here are the libraries I used
library(tidyverse) # standard
library(knitr) # need for a couple things to make knitted document to look nice
library(readr) # need to read in data
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car) # need for some regression stuff like vif
library(GGally)
library(Hmisc) # Needed for some visuals
library(rms) # needed for some data reduction tech.
library(pcaPP)
library(see)
library(performance)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())
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9.1 Explainable statistical learning in public health for policy
development: the case of real-world suicide data

We will work with data made available from this paper:

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0796-7

If you want to go really in-depth of how you deal with data, this article goes into a lot of
detail.

phe <- read_csv(here::here("datasets","phe.csv"))

9.1.1 Variables. A LOT!

Variables
2014 Suicide (age-standardised rate per 100,000 - outcome measure)
2013 Adult social care users who have as much social contact as they would like (% of adult
social care users)
2013 Adults in treatment at specialist alcohol misuse services (rate per 1000 population)
2013 Adults in treatment at specialist drug misuse services (rate per 1000 population)
2013 Alcohol-related hospital admission (female) (directly standardised rate per 100,000
female population)
2013 Alcohol-related hospital admission (male) (directly standardised rate per 100,000 male
population)
2013 Alcohol-related hospital admission (directly standardised rate per 100,000 population)
2013 Children in the youth justice system (rate per 1,000 aged 10–18)
2013 Children leaving care (rate per 10,000 < 18 population)
2013 Depression recorded prevalence (% of adults with a new diagnosis of depression who
had a bio-psychosocial assessment)
2013 Domestic abuse incidents (rate per 1,000 population)
2013 Emergency hospital admissions for intentional self-harm (female) (directly
age-standardised rate per 100,000 women)
2013 Emergency hospital admissions for intentional self-harm (male) (directly
age-standardised rate per 100,000 men)
2013 Emergency hospital admissions for intentional self-harm (directly
age-and-sex-standardised rate per 100,000)
2013 Looked after children (rate per 10,000 < 18 population)
2013 Self-reported well-being - high anxiety (% of people)
2013 Severe mental illness recorded prevalence (% of practice register [all ages])
2013 Social care mental health clients receiving services (rate per 100,000 population)
2013 Statutory homelessness (rate per 1000 households)
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Variables
2013 Successful completion of alcohol treatment (% who do not represent within 6 months)
2013 Successful completion of drug treatment - non-opiate users (% who do not represent
within 6 months)
2013 Successful completion of drug treatment - opiate users (% who do not represent within
6 months)
2013 Unemployment (% of working-age population)
2012 Adult carers who have as much social contact as they would like (18+ yrs) (% of 18+
carers)
2012 Adult carers who have as much social contact as they would like (all ages) (% of adult
carers)
2011 Estimated prevalence of opiates and/or crack cocaine use (rate per 1,000 aged 15–64)
2011 Long-term health problems or disability (% of people whose day-to-day activities are
limited by their health or disability)
2011 Marital breakup (% of adults whose current marital status is separated or divorced)
2011 Older people living alone (% of households occupied by a single person aged 65 or over)
2011 People living alone (% of all households occupied by a single person)
Mental Health Service users with crisis plans: % of people in contact with services with a
crisis plan in place (end of quarter snapshot)
Older people
2011 Self-reported well-being - low happiness (% of people with a low happiness score)

9.2 How do we choose variables?

Objective: Find a way to predict suicide rates.

We could just use all of the predictors in a linear model.

fullLm <- lm(suicide_rate ~ ., phe)

summary(fullLm)

Call:
lm(formula = suicide_rate ~ ., data = phe)

Residuals:
Min 1Q Median 3Q Max

-3.0118 -1.0447 -0.2702 0.9903 4.1993
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0155877 3.5059381 0.575 0.566
children_youth_justice -0.0235629 0.0247292 -0.953 0.343
adult_carers_isolated_18 0.0336685 0.0262501 1.283 0.202
adult_carers_isolated_all_ages -0.0226404 0.0424220 -0.534 0.595
adult_carers_not_isolated 0.3786174 0.2379446 1.591 0.114
alcohol_rx_18 -0.3001189 0.2515821 -1.193 0.235
alcohol_rx_all_ages -0.0130574 0.0148093 -0.882 0.380
alcohol_admissions_f -0.0060296 0.0127911 -0.471 0.638
alchol_admissions_m 0.0167345 0.0268020 0.624 0.534
alcohol_admissions_p -0.0600782 0.0895445 -0.671 0.504
children_leaving_care 0.0216349 0.0288644 0.750 0.455
depression -0.1169805 0.1328876 -0.880 0.380
domestic_abuse 0.0269278 0.0419236 0.642 0.522
self_harm_female 0.0369915 0.0946913 0.391 0.697
self_harm_male 0.0318458 0.0944774 0.337 0.737
self_harm_persons -0.0658812 0.1902674 -0.346 0.730
opiates 0.2041520 0.1375203 1.485 0.140
lt_health_problems 0.0318830 0.1456081 0.219 0.827
lt_unepmloyment -0.6342130 1.2588572 -0.504 0.615
looked_after_children 0.0174365 0.0146237 1.192 0.236
marital_breakup 0.1606036 0.1723378 0.932 0.353
old_pople_alone 0.3779967 0.4371635 0.865 0.389
alone -0.1004305 0.1386281 -0.724 0.470
self_reported_well_being 0.0605038 0.0681410 0.888 0.376
smi 2.1708482 1.3401643 1.620 0.108
social_care_mh 0.0006815 0.0005270 1.293 0.199
homeless -0.1550536 0.1051424 -1.475 0.143
alcohol_rx 0.0170587 0.0282631 0.604 0.547
drug_rx_non_opiate -0.0408008 0.0271119 -1.505 0.135
drug_rx_opiate 0.1068925 0.0848400 1.260 0.210
unemployment 0.0690206 0.2925910 0.236 0.814

Residual standard error: 1.687 on 118 degrees of freedom
Multiple R-squared: 0.5031, Adjusted R-squared: 0.3767
F-statistic: 3.982 on 30 and 118 DF, p-value: 3.823e-08

autoplot(fullLm)
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If we are going by statistical significance, each predictor variable fails but the global F-test
says that a linear model is working (sort of).

And that 𝑅2 is pretty good for “prediciting” something related to human behavior.

Residuals look good.

Overall, this is bad!

You do not just use all the variables you have

Though there are exceptions: read Harrell’s Regression Model Strategies (Chapter 4, Section
12, 4.12.1 - 4.12.3)

9.2.1 The scope of the problem

How many variables are there to use…? How well do they work?

We could try cor(phe) and see which variables are most correlated with suicide_rate. (You’ll
get a lot of output… that’s 31 × 31 = 961 correlations)

I’ll save you the pain and just show the correlations with just suicide_rate.

suicide_rate
children_youth_justice 0.05847330
adult_carers_isolated_18 0.24939518
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adult_carers_isolated_all_ages 0.20369843
adult_carers_not_isolated 0.45228878
alcohol_rx_18 0.38997284
alcohol_rx_all_ages 0.33117982
alcohol_admissions_f 0.29906808
alchol_admissions_m 0.31868168
alcohol_admissions_p 0.11433511
children_leaving_care 0.36700280
depression 0.32509700
domestic_abuse 0.14835220
self_harm_female 0.49025136
self_harm_male 0.52004798
self_harm_persons 0.51686092
opiates 0.41195709
lt_health_problems 0.47825399
lt_unepmloyment 0.19643927
looked_after_children 0.51243274
marital_breakup 0.39971208
old_pople_alone 0.39870200
alone 0.31037882
self_reported_well_being 0.12949288
smi 0.18390513
social_care_mh 0.20125278
homeless -0.32105739
alcohol_rx -0.07513134
drug_rx_non_opiate -0.14207504
drug_rx_opiate -0.14345307
unemployment 0.18827138

9.2.2 Just use the best correlations?

These are a few of the strongest correlations.

suicide_rate

self_harm_female 0.49025136
self_harm_male 0.52004798
self_harm_persons 0.51686092
looked_after_children 0.51243274

Let’s make a model.
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badIdea <- lm(suicide_rate ~ self_harm_female + self_harm_male + self_harm_persons + looked_after_children, phe)

summary(badIdea)

Call:
lm(formula = suicide_rate ~ self_harm_female + self_harm_male +

self_harm_persons + looked_after_children, data = phe)

Residuals:
Min 1Q Median 3Q Max

-4.1974 -1.2196 0.0677 1.1319 6.4354

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.521275 0.485989 13.419 < 2e-16 ***
self_harm_female 0.059297 0.087465 0.678 0.498889
self_harm_male 0.053601 0.087682 0.611 0.541954
self_harm_persons -0.106747 0.175961 -0.607 0.545038
looked_after_children 0.031342 0.008442 3.713 0.000292 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.763 on 144 degrees of freedom
Multiple R-squared: 0.3379, Adjusted R-squared: 0.3195
F-statistic: 18.37 on 4 and 144 DF, p-value: 3.246e-12

What does the model have to say about how the self harm variables are related to suicide
rate?

9.3 Multicollinearity

pairs(suicide_rate ~ self_harm_persons + self_harm_female + self_harm_male, phe)
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cor(phe$self_harm_female,phe$self_harm_male)

[1] 0.8865727

cor(phe$self_harm_persons,phe$self_harm_male)

[1] 0.9601094

cor(phe$self_harm_persons,phe$self_harm_female)

[1] 0.9804772

When we have predictor variables that are linearly related to each other, we have what is
called multi-collinearity.

These variables essentially all contribute the same information over and over to the model.
This makes a feedback loop that kicks everything around.

What about a model with just self_harm_persons (Why that one?) and looked_after_children?
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notAsBadLm <- lm(suicide_rate ~ self_harm_persons + looked_after_children, phe)

summary(notAsBadLm)

Call:
lm(formula = suicide_rate ~ self_harm_persons + looked_after_children,

data = phe)

Residuals:
Min 1Q Median 3Q Max

-4.3450 -1.2323 0.0677 1.0792 6.2763

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.704515 0.430054 15.590 < 2e-16 ***
self_harm_persons 0.008385 0.002124 3.947 0.000123 ***
looked_after_children 0.027803 0.007281 3.818 0.000198 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.756 on 146 degrees of freedom
Multiple R-squared: 0.3337, Adjusted R-squared: 0.3246
F-statistic: 36.56 on 2 and 146 DF, p-value: 1.344e-13

9.3.1 But what about self harm and looking after children?

Relations may not be as blaringly obvious as that. What about self harm and looking after
children?

ggplot(phe, aes(x = self_harm_persons, y = looked_after_children)) +
geom_point() +
stat_cor()

181



R = 0.59, p = 3.3e−15
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This isn’t nearly as bad and wouldn’t be considered a detrimental relation.

9.4 Measuring multi-collinearity

9.4.1 A linear model for the predictors

Linear relation between many predictor variables.

𝑥𝑘 = 𝛽∗
0 + 𝛽∗

1𝑥1 + 𝛽∗
2𝑥2 + ⋯ + 𝛽∗

𝑝𝑥𝑝 + 𝜖∗

This is like any model and has it’s own 𝑅2 𝑅2
𝑘.

If this 𝑅2 is high, it means that a predictor variable is redundant.

There are a few ways to measure “high”.

Some sources would say that 0.8 ≤ 𝑅2
𝑘 ≤ 0.9 would be problematic, and you have extreme

multicollinearity issues for anything higher.
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9.4.2 Tolerance

Tolerance is 1 − 𝑅2
𝑘.

That’s it.

So 0.2 is the “problematic” cutoff and 0.9 is the “extreme” cutoff.

It may be referred to as TOL sometimes.

9.4.3 Variance Inflation Factors

The Variance Inflation Factor is:

𝑉 𝐼𝐹𝑘 = 1
1 − 𝑅2

𝑘

The VIF is considered “problematic” if greater than 5, and “extreme” if greater than 10.

9.4.4 Getting TOL or VIF: performance package

A nifty package that will help us deal with all the nasty bits of linear regression in R is the
performance package. It is part of the easystats universe of packages.

To get tolerance and VIFs, create the model using lm(), and then plug it into the
check_collinearity function.

• check_collinearity(model)

library(performance)
library(see)

# badidea was the model with all the self harm variables

check_collinearity(badIdea)

# Check for Multicollinearity

Low Correlation

Term VIF VIF 95% CI Increased SE Tolerance
looked_after_children 2.04 [ 1.66, 2.63] 1.43 0.49
Tolerance 95% CI
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[0.38, 0.60]

High Correlation

Term VIF VIF 95% CI Increased SE Tolerance
self_harm_female 3811.50 [2809.27, 5171.42] 61.74 2.62e-04

self_harm_male 1863.65 [1373.68, 2528.51] 43.17 5.37e-04
self_harm_persons 10400.43 [7665.39, 14111.48] 101.98 9.61e-05
Tolerance 95% CI

[0.00, 0.00]
[0.00, 0.00]
[0.00, 0.00]

Versus

check_collinearity(notAsBadLm)

# Check for Multicollinearity

Low Correlation

Term VIF VIF 95% CI Increased SE Tolerance
self_harm_persons 1.53 [1.29, 1.96] 1.24 0.65

looked_after_children 1.53 [1.29, 1.96] 1.24 0.65
Tolerance 95% CI

[0.51, 0.78]
[0.51, 0.78]

9.4.5 Plot check_collinearity checks

plot(check_collinearity(badIdea))
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Versus

plot(check_collinearity(notAsBadLm))
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9.4.6 VIF and Tolerance in the full model

• You do not get rid of a variable because it has a small tolerance/large VIF!

• You would investigate which variables are most correlated with eachother.

• You need to use your own reasoning to decide which variables to remove based on the
correlations between predictors AND the response.

Tolerance and VIF only indicate that the overall model has a problem, not the individual
variable.

check_collinearity(fullLm)

# Check for Multicollinearity

Low Correlation

Term VIF VIF 95% CI Increased SE
children_youth_justice 1.48 [ 1.29, 1.80] 1.22

adult_carers_isolated_18 1.88 [ 1.59, 2.30] 1.37
adult_carers_isolated_all_ages 1.84 [ 1.57, 2.26] 1.36

adult_carers_not_isolated 3.11 [ 2.55, 3.88] 1.76
alcohol_admissions_p 2.05 [ 1.73, 2.52] 1.43

children_leaving_care 4.32 [ 3.49, 5.42] 2.08
depression 2.73 [ 2.25, 3.38] 1.65

domestic_abuse 1.90 [ 1.61, 2.33] 1.38
marital_breakup 2.36 [ 1.97, 2.91] 1.54

alone 4.82 [ 3.88, 6.06] 2.19
self_reported_well_being 1.42 [ 1.24, 1.72] 1.19

smi 3.62 [ 2.94, 4.52] 1.90
social_care_mh 1.29 [ 1.15, 1.58] 1.14

homeless 3.11 [ 2.55, 3.87] 1.76
alcohol_rx 3.27 [ 2.68, 4.08] 1.81

drug_rx_non_opiate 3.21 [ 2.63, 4.00] 1.79
drug_rx_opiate 1.99 [ 1.68, 2.44] 1.41

Tolerance Tolerance 95% CI
0.68 [0.56, 0.78]
0.53 [0.43, 0.63]
0.54 [0.44, 0.64]
0.32 [0.26, 0.39]
0.49 [0.40, 0.58]
0.23 [0.18, 0.29]
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0.37 [0.30, 0.44]
0.53 [0.43, 0.62]
0.42 [0.34, 0.51]
0.21 [0.16, 0.26]
0.71 [0.58, 0.81]
0.28 [0.22, 0.34]
0.77 [0.63, 0.87]
0.32 [0.26, 0.39]
0.31 [0.24, 0.37]
0.31 [0.25, 0.38]
0.50 [0.41, 0.60]

Moderate Correlation

Term VIF VIF 95% CI Increased SE Tolerance
lt_unepmloyment 5.30 [ 4.26, 6.68] 2.30 0.19

looked_after_children 6.68 [ 5.33, 8.45] 2.58 0.15
unemployment 8.68 [ 6.89, 11.02] 2.95 0.12

Tolerance 95% CI
[0.15, 0.23]
[0.12, 0.19]
[0.09, 0.15]

High Correlation

Term VIF VIF 95% CI Increased SE Tolerance
alcohol_rx_18 18.48 [ 14.52, 23.59] 4.30 0.05

alcohol_rx_all_ages 351.34 [ 273.84, 450.86] 18.74 2.85e-03
alcohol_admissions_f 978.20 [ 762.20, 1255.50] 31.28 1.02e-03
alchol_admissions_m 2345.59 [ 1827.47, 3010.68] 48.43 4.26e-04

self_harm_female 4877.78 [ 3800.20, 6261.00] 69.84 2.05e-04
self_harm_male 2362.51 [ 1840.66, 3032.40] 48.61 4.23e-04

self_harm_persons 13277.66 [10344.20, 17043.10] 115.23 7.53e-05
opiates 12.46 [ 9.83, 15.87] 3.53 0.08

lt_health_problems 11.71 [ 9.25, 14.91] 3.42 0.09
old_pople_alone 11.18 [ 8.84, 14.23] 3.34 0.09

Tolerance 95% CI
[0.04, 0.07]
[0.00, 0.00]
[0.00, 0.00]
[0.00, 0.00]
[0.00, 0.00]
[0.00, 0.00]
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[0.00, 0.00]
[0.06, 0.10]
[0.07, 0.11]
[0.07, 0.11]

You have to jump through a lot of hoops and then make justifiable choices.

9.4.7 Detecting Multicollinearity

The following our indicators of multicollinearity:

1. “Significant” correlations between pairs of independent variables.
2. Non-significant t-tests for all or nearly all of the predictor variables, but a significant

global F-test.
3. The coefficients have opposite signs than what would be expected (by logic or compared

to the individual correlation with the response variable).
4. A single VIF of 10, more than one VIF of 5 or above. Several VIF 3 or over. Or

corresponding tolerance values. Or corresponding 𝑅2
𝑘 values

The cutoffs for VIF, tolerance, or 𝑅2
𝑘 are guidelines not solid rules. Theory should always

trump these more arbitrary statistical rules.

9.5 Variable screening the PHE data

The paper has various methods for variable selection to remove multicollinearity issues.

They don’t really document it that well… Here’s my best take.

# I created this dataset after going through things over and over
# I removed variables from the csv as I was working with it in R
# Lots of fun!

# also, I only use this dataset for demonstration so I don't have to type out
# all of the variables I left in the data into the formula.

pheRed <- read_csv(here::here("datasets",
'phe_reduced.csv'))

redModel <- lm(suicide_rate ~ ., pheRed)

check_collinearity(redModel)
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# Check for Multicollinearity

Low Correlation

Term VIF VIF 95% CI Increased SE Tolerance
children_youth_justice 1.13 [1.04, 1.51] 1.06 0.88

adult_carers_isolated_all_ages 1.48 [1.27, 1.85] 1.22 0.68
alcohol_admissions_p 1.78 [1.49, 2.23] 1.33 0.56
children_leaving_care 2.58 [2.09, 3.30] 1.61 0.39

depression 2.21 [1.81, 2.80] 1.49 0.45
domestic_abuse 1.42 [1.23, 1.78] 1.19 0.70

self_harm_persons 2.35 [1.92, 2.99] 1.53 0.43
opiates 2.14 [1.76, 2.70] 1.46 0.47

marital_breakup 1.83 [1.53, 2.30] 1.35 0.55
alone 1.49 [1.28, 1.87] 1.22 0.67

self_reported_well_being 1.24 [1.10, 1.57] 1.11 0.81
social_care_mh 1.17 [1.05, 1.51] 1.08 0.86

homeless 2.25 [1.84, 2.86] 1.50 0.44
alcohol_rx 1.43 [1.24, 1.80] 1.20 0.70

drug_rx_opiate 1.62 [1.37, 2.03] 1.27 0.62
Tolerance 95% CI

[0.66, 0.97]
[0.54, 0.79]
[0.45, 0.67]
[0.30, 0.48]
[0.36, 0.55]
[0.56, 0.81]
[0.33, 0.52]
[0.37, 0.57]
[0.43, 0.65]
[0.54, 0.78]
[0.64, 0.91]
[0.66, 0.95]
[0.35, 0.54]
[0.56, 0.81]
[0.49, 0.73]

• Some variables I removed because I could not find the correct definition.

• I am not an expert on this stuff so I had to do my best based on my mediocre knowledge
of the subject matter, and trying to figure out what the authors of the paper were saying.

• When it is okay to stop removing variables is entirely dependent on the situation. I don’t
even have a guideline for it.
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9.6 Next step: Choosing an actual model

Supposing the multicollinearity issue has been solved, how do we move on?

Do we use all the variables in the model?

summary(redModel)

Call:
lm(formula = suicide_rate ~ ., data = pheRed)

Residuals:
Min 1Q Median 3Q Max

-3.8689 -1.1154 -0.0917 0.8901 4.2030

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.0832859 3.0285950 1.348 0.1799
children_youth_justice -0.0136101 0.0220822 -0.616 0.5387
adult_carers_isolated_all_ages 0.0000509 0.0387482 0.001 0.9990
alcohol_admissions_p -0.0623441 0.0849678 -0.734 0.4644
children_leaving_care 0.0422261 0.0227752 1.854 0.0659 .
depression -0.1622739 0.1220073 -1.330 0.1858
domestic_abuse 0.0247253 0.0369822 0.669 0.5049
self_harm_persons 0.0066734 0.0025813 2.585 0.0108 *
opiates 0.1010386 0.0580642 1.740 0.0842 .
marital_breakup 0.2937180 0.1548091 1.897 0.0600 .
alone 0.0336382 0.0786620 0.428 0.6696
self_reported_well_being 0.0345748 0.0650050 0.532 0.5957
social_care_mh 0.0007603 0.0005101 1.490 0.1385
homeless -0.2377671 0.0912485 -2.606 0.0102 *
alcohol_rx -0.0047326 0.0190770 -0.248 0.8045
drug_rx_opiate 0.0305590 0.0779842 0.392 0.6958
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.72 on 133 degrees of freedom
Multiple R-squared: 0.4176, Adjusted R-squared: 0.3519
F-statistic: 6.358 on 15 and 133 DF, p-value: 5.163e-10

• Well now at least some of the predictor’s are significant.

• We should not just use all predictors since that ruins the generalizibility of the model.
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9.6.0.1 The principle of parsimony: Models should have as few variables/parameters as
possible while retaining adequacy.

9.7 Methods for model assessment

We have many variables to choose from, and it’s really easy to make a model.

• Should we just pick the variables most highly correlated with suicide rate?

• What is our cutoff then?

suicide_rate
children_youth_justice 0.05847330
adult_carers_isolated_all_ages 0.20369843
alcohol_admissions_p 0.11433511
children_leaving_care 0.36700280
depression 0.32509700
domestic_abuse 0.14835220
self_harm_persons 0.51686092
opiates 0.41195709
marital_breakup 0.39971208
alone 0.31037882
self_reported_well_being 0.12949288
social_care_mh 0.20125278
homeless -0.32105739
alcohol_rx -0.07513134
drug_rx_opiate -0.14345307

cor1 <- lm(suicide_rate ~ self_harm_persons, phe)
cor2 <- lm(suicide_rate ~ self_harm_persons + opiates, phe)
cor3 <- lm(suicide_rate ~ self_harm_persons + opiates + marital_breakup, phe)
cor4 <- lm(suicide_rate ~ self_harm_persons + opiates + marital_breakup +

children_leaving_care, phe)
cor5 <- lm(suicide_rate ~ self_harm_persons + opiates + marital_breakup +

children_leaving_care + depression, phe)
cor6 <- lm(suicide_rate ~ self_harm_persons + opiates + marital_breakup +

children_leaving_care + depression + homeless, phe)

• Is the last model the best?
• Should we add more variables?
• Different variables?
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9.7.1 Just “significant” variables?

Lets use any of the variables that had a p-value below 0.1.

# Changing model name method since now we will be looking at several models

sig1 <- lm(suicide_rate ~ children_leaving_care + self_harm_persons + opiates + marital_breakup + homeless, phe)

summary(sig1)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + marital_breakup + homeless, data = phe)

Residuals:
Min 1Q Median 3Q Max

-3.8194 -1.1301 -0.1541 0.9383 5.6420

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.855937 1.449776 3.349 0.00104 **
children_leaving_care 0.037193 0.019703 1.888 0.06109 .
self_harm_persons 0.005501 0.002307 2.385 0.01840 *
opiates 0.123432 0.050315 2.453 0.01536 *
marital_breakup 0.218171 0.134664 1.620 0.10741
homeless -0.212926 0.075547 -2.818 0.00551 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.705 on 143 degrees of freedom
Multiple R-squared: 0.385, Adjusted R-squared: 0.3635
F-statistic: 17.91 on 5 and 143 DF, p-value: 9.201e-14

autoplot(sig1)
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Wait… now marital breakup isn’t significant?

# Changing model name method since now we will be looking at several models

sig2 <- lm(suicide_rate ~ children_leaving_care + self_harm_persons + opiates +
homeless, phe)

summary(sig2)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + homeless, data = phe)

Residuals:
Min 1Q Median 3Q Max

-3.8777 -1.1053 0.0011 1.0022 5.8723

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.033367 0.546679 12.866 < 2e-16 ***
children_leaving_care 0.044142 0.019338 2.283 0.02392 *
self_harm_persons 0.006671 0.002203 3.028 0.00292 **
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opiates 0.121234 0.050580 2.397 0.01782 *
homeless -0.227131 0.075459 -3.010 0.00309 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.714 on 144 degrees of freedom
Multiple R-squared: 0.3738, Adjusted R-squared: 0.3564
F-statistic: 21.49 on 4 and 144 DF, p-value: 6.473e-14

autoplot(sig2)
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• Relying on “statistical” significance means you will end-up shooting yourself in the foot,
metaphorically speaking, i.e., make a bad model.

9.7.2 𝑅2? (Don’t use it to choose models).

Recall the definition of 𝑅2: It is the proportion of variability in the response variable explained
by your predictor variables in the linear model.

Higher 𝑅2 is better, so maybe we should choose the model with the highest 𝑅2?

• The full model has an 𝑅2 of 0.5031.
• After whittling down some variables due to multicollinearity, model1 has an 𝑅2 of 0.385.
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• model2 has an 𝑅2 of 0.3738.

So the full model is best! Right? All this stuff about variable elimination is pointless. I wasted
hours of my life to get to this point…. No!

Never determine which is the best model via 𝑅2.

• 𝑅2 can be arbitrarily high when using many variables that may not be actually related
to the response variable in any meaningful way.

n = 500
a = 10; b = 10

### MAKING DATA WITH A TRUE LINEAR MODEL
x <- rnorm(n, 10, 5)
y = a + b*x + rnorm(n,0 ,80)

data <- data.frame(y,x)

ggplot(data, aes(x,y)) +
geom_point() +
geom_smooth(method = 'lm')
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summary(lm(y ~ x, data))

Call:
lm(formula = y ~ x, data = data)

Residuals:
Min 1Q Median 3Q Max

-311.10 -58.74 2.12 53.43 322.70

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0884 8.2479 0.374 0.708
x 10.8010 0.7157 15.092 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 83.53 on 498 degrees of freedom
Multiple R-squared: 0.3138, Adjusted R-squared: 0.3125
F-statistic: 227.8 on 1 and 498 DF, p-value: < 2.2e-16

• The R-squared here for the perfectly correct model is 0.3138388

– R-squared can be low even when you use the “correct” model.

• Now let’s throw in some irrelevant data and graph what happens to R-squared.

# Extra worthless predictors

p = 300

extra.predictors <- data.frame(matrix(rnorm(n*p), nrow=n))

full.data <- data.frame(data, extra.predictors)# need code to combine true and extra data

rsq = rep(NA, p+1)

for(iter in 1:(p+1)){
form <-formula(paste('y ~ ', paste(names(full.data)[2:(iter+1)], collapse=' + ')))
fit.mdl <- lm(form, data=full.data)
rsq[iter] <- summary(fit.mdl)$r.squared # Get the rsq value for the model.
}
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ggplot(data.frame(nvars=1:(p+1), rsq),aes(x=nvars,y=rsq)) +
geom_path()
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• The beginning of the line on the left represents the R-squared value when using the one
predictor variable that actually has any true relation with the response variable.

• When we add on additional predictors (useless ones), R-squared always increases.

9.7.3 Adjusted 𝑅2 (More conservative)

𝑅2
𝑎𝑑𝑗 = 1 − (1 − 𝑅2) 𝑛 − 1

𝑛 − 𝑝 − 1
This is supposed to correct for the fact that 𝑅2 always increases with a greater number of
variables (penalizes for the complexity of the model).

Here’s a table for most of the models we’ve discussed so far. It has both the adjusted and
unadjusted form.

model Rsq AdjRsq
1 fullLm 0.5030783 0.3767423
2 redModel 0.4176079 0.3519246
3 cor1 0.2671452 0.2621598

197



4 cor2 0.3275478 0.3183361
5 cor3 0.3476621 0.3341654
6 cor4 0.3508866 0.3328556
7 cor5 0.3514271 0.3287497
8 cor6 0.3943409 0.3687496

But… it doesn’t necessarily. Don’t trust it either.

9.7.4 Predicted 𝑅2 (Even more conservative)

Predicted R-squared or as I will write 𝑅2𝑝𝑟𝑒𝑑 is another play on the same idea as 𝑅2, except
for it is based on taking out an observation, computing the regression model without it, then
seeing how well the model predicts the left out value.

You can get it via the olsrr package using the ols_pred_rsq() function. The input is your
model.

For instance, let us compare this to 𝑅2 from the performance package.

r2(fullLm)

# R2 for Linear Regression
R2: 0.503

adj. R2: 0.377

library(olsrr)
ols_pred_rsq(fullLm)

[1] 0.1258262

That’s a lot worse than the 0.503 for the unadjusted R-Squared

Here’s a new table including predicted R-squared

model Rsq AdjRsq PredRsq
1 fullLm 0.5030783 0.3767423 0.1258262
2 redModel 0.4176079 0.3519246 0.2264297
3 cor1 0.2671452 0.2621598 0.2445699
4 cor2 0.3275478 0.3183361 0.2929179
5 cor3 0.3476621 0.3341654 0.3003604
6 cor4 0.3508866 0.3328556 0.2948558
7 cor5 0.3514271 0.3287497 0.2818233
8 cor6 0.3943409 0.3687496 0.3218613
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• 𝑅2 only tells how well the model works on the data you have (overfitting kills its utility).
• 𝑅2

𝑎𝑑𝑗 tries to make an attempt at saying how well the model would work on the wider
population/future observations.

• 𝑅2
𝑝𝑟𝑒𝑑 is probably the best measure of how well your model will actually work with new

data.
• NONE of these are perfect so use these tools with caution and care.

9.7.5 Akaike Information Criterion AIC

One last point of discussion will be the Akaike Information Criterion.

𝐴𝐼𝐶 = 2(𝑝 + 1) + 𝑛 log(𝑆𝑆𝐸/𝑛) − 𝐶

There’s a lot of theory behind this one and the Bayesian Information Criterion (BIC)

𝐵𝐼𝐶 = (𝑝 + 1) ln(𝑛) + 𝑛 log(𝑆𝑆𝐸/𝑛) − 𝐶

This is where things get more confusing since AIC and BIC are numbers where SMALLER IS
BETTER.

We will just be looking at AIC

model Rsq AdjRsq PredRsq AIC
1 fullLm 0.5030783 0.3767423 0.1258262 183.0882
2 redModel 0.4176079 0.3519246 0.2264297 176.7362
3 cor1 0.2671452 0.2621598 0.2445699 182.9770
4 cor2 0.3275478 0.3183361 0.2929179 172.1605
5 cor3 0.3476621 0.3341654 0.3003604 169.6356
6 cor4 0.3508866 0.3328556 0.2948558 170.8973
7 cor5 0.3514271 0.3287497 0.2818233 172.7732
8 cor6 0.3943409 0.3687496 0.3218613 164.5730

Different measures will tell you different things.

Here 𝑅2
𝑝𝑟𝑒𝑑 and AIC agree that the cor6 model is the best.

cor6 <- lm(suicide_rate ~ self_harm_persons + opiates + marital_breakup +
children_leaving_care + depression + homeless, phe)

So is that the one we use?

It’s not that simple.
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9.8 Variable Selection Methods: Problems and Pitfalls

• Variable selection = methods for choosing which predictor variables to include in statis-
tical models

• Focus on stepwise regression as a common but problematic approach
• Stepwise selection: automated process of adding/removing variables based on statistical

significance (p-values and model fit)

9.8.1 Major Problems with Stepwise Selection

9.8.1.1 1. Biased R-squared Values

• R-squared values are inflated
• Makes model appear to explain more variation than it actually does
• Gives false confidence in model’s predictive ability

9.8.1.2 2. Invalid Statistical Inference

• P-values are too small (not valid)
• Confidence intervals are too narrow
• Doesn’t account for multiple testing problem
• Standard errors are biased low

9.8.1.3 3. Biased Regression Coefficients

• Coefficients are biased away from zero
• More likely to select variables with overestimated effects
• Selection process favors chance findings
• True effects may be much smaller than estimated

9.8.1.4 4. Model Instability

• Results highly dependent on sample
• Small changes in data can lead to different variables being selected
• Poor reproducibility
• Different samples likely to produce different models
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9.8.2 Example: House Price Prediction

• Scenario: 20 potential predictors of house prices
• First sample might select:

– Square footage
– Number of bathrooms
– Lot size

• Second sample might select completely different variables:

– Age of house
– Number of bedrooms
– Distance to downtown

• Demonstrates instability of selection process

9.8.3 Better Alternatives

9.8.3.1 1. Theory-Driven Selection

• Use subject matter knowledge
• Select variables based on theoretical importance
• Include known important predictors regardless of significance

9.8.3.2 2. Include More Variables

• Keep theoretically important variables
• Don’t eliminate based solely on statistical significance
• Better to include too many than too few important variables

– Degrees of freedom permitting of course!

9.8.3.3 3. Alternative Dimension Reduction Methods

• Principal Components Analysis
• Regularization methods (LASSO, Ridge regression)
• Data reduction techniques that don’t use outcome variable
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9.8.4 Key Takeaways

• Avoid automated variable selection methods
• Don’t let computational convenience override good statistical practice
• Complex but theoretically sound models preferred over overly simplified ones
• Statistical significance shouldn’t be the sole criterion for variable inclusion
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10 Prespecification of Predictor Complexity in
Statistical Modeling

10.1 I. Introduction to Linear Relationships

• Truly linear relationships are rare in real-world data
• Notable exception: Same measurements at different timepoints

– Example: Blood pressure before and after treatment

• Most relationships between predictors and outcomes are nonlinear
• Linear modeling often chosen due to data limitations, not reality

10.2 Problems with Post-Hoc Simplification

10.2.1 Common but Problematic Approaches:

1. Examining scatter plots
2. Checking descriptive statistics
3. Using informal assessments
4. Modifying model based on these observations

10.2.2 Key Issue:

• Creates “phantom degrees of freedom”
• Informal assessments use degrees of freedom not accounted for in:

– Standard errors
– P-values
– R² values
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10.3 The Prespecification Approach

10.3.1 Core Principles:

1. Decide on predictor complexity before examining relationships
2. Base decisions on:

• Effective sample size
• Prior knowledge
• Expected predictor importance

3. Maintain decisions regardless of analysis results

10.3.2 Benefits:

• More reliable statistical inference
• Better representation of uncertainty
• Prevention of bias from data-driven simplification

10.4 Practical Implementation

10.4.1 Guidelines for Complexity:

• Allow more complex representations for:

1. Stronger expected relationships
2. Larger effective sample sizes
3. More important predictors

10.4.2 Examples of Implementation:

• Using splines with more knots for important predictors
• Scaling complexity to sample size
• Matching complexity to theoretical importance
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10.5 Validation and Testing

10.5.1 Allowed Practices:

• Graphing estimated relationships
• Performing nonlinearity tests
• Presenting results to readers

10.5.2 Important Rule:

• Maintain prespecified complexity even if simpler relationships appear adequate

10.6 The Directional Principle

10.6.1 Key Concepts:

1. Moving simple → complex

• Degrees of freedom properly increase
• Statistical tests maintain distribution

2. Moving complex → simple

• Requires special adjustments
• May compromise statistical validity

10.7 Importance and Impact

10.7.1 Benefits of Prespecification:

1. Prevents optimistic performance estimates
2. Maintains valid statistical inference
3. Provides reliable predictions
4. Avoids data-driven simplification bias

10.7.2 Trade-offs:

• May appear conservative
• Slight overfitting preferred to spurious precision
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10.8 Summary

• Prespecify predictor complexity based on prior knowledge
• Avoid data-driven simplification
• Maintain statistical validity through consistent approach
• Better to slightly overfit than create spuriously precise estimates

10.9 Sample Size Requirements & Overfitting in Regression Models

10.9.1 Definition

• Overfitting occurs when model complexity exceeds data information content
• Results in:

– Inflated measures of model performance (e.g., R²)
– Poor prediction on new data
– Model fits noise rather than signal

10.9.1.1 Visual Example

Consider two models of the same data:
Simple model: y ~ x
Overfit model: y ~ x + x² + x³ + x� + ...

10.9.2 The m/15 Rule

10.9.2.1 Limiting Sample Size (m)

Type of Response Limiting Sample Size (m)
Continuous Total sample size (n)
Binary min(n�, n�) smaller group
Ordinal (k categories) n - (1/n)Σn�³
Survival time Number of events/failures

10.9.2.2 Basic Rule

• Number of parameters (p) should be < m/15
• Some situations require more conservative p < m/20
• Less conservative p < m/10 possible
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10.9.3 Counting Parameters

10.9.3.1 Include ALL of these in your count:

1. Main predictor variables
2. Nonlinear terms
3. Interaction terms
4. Dummy variables for categorical predictors (k-1)

10.9.3.2 Example Parameter Count

Model components:
- Age (nonlinear, 3 knots) = 2 parameters
- Sex (binary) = 1 parameter
- Treatment (3 categories) = 2 parameters
- Age × Treatment interaction = 4 parameters
Total = 9 parameters

10.9.4 Special Considerations

10.9.4.1 Need More Conservative Ratios When:

• Predictors have narrow distributions

– e.g., age range 30-45 years only

• Highly unbalanced categorical variables

– e.g., 95% in one category

• Clustered measurements
• Small effect sizes expected

10.9.5 Practical Example

10.9.5.1 Binary Outcome Study

Study population:
- 1000 total patients
- 100 heart attacks
- 900 no heart attacks
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Calculations:
m = min(100, 900) = 100
Maximum parameters = 100/15 � 6-7

10.9.6 Alternative Approaches

10.9.6.1 Other Methods to Assess/Prevent Overfitting:

1. Shrinkage estimates
2. Cross-validation
3. Bootstrap validation
4. Penalized regression methods

10.9.7 Sample Size for Variance Estimation

• Need ~70 observations for ±20% precision in 𝜎 estimate
• Affects all standard errors and p-values
• Critical for reliable inference

10.9.8 Key Takeaways

1. Count Everything: Include all terms in parameter count
2. Be Conservative: Use m/15 as starting point
3. Consider Context: Adjust for data peculiarities
4. Validate: Use shrinkage or cross-validation
5. Simplify: Prefer simpler models when in doubt

10.9.9 Practice Problems

1. Calculate maximum parameters for:

• 500 patients, continuous outcome
• 1000 patients, 150 events (survival)
• 300 patients, 50/250 binary outcome

2. Count parameters in model:

y ~ age + age² + sex + treatment*race
where treatment has 3 levels and race has 4 levels
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10.10 Shrinkage in Statistical Models: Understanding the Basics

10.10.1 Introduction

• Statistical models can suffer from overfitting
• Overfitting: model performs well on training data but poorly on new data
• Similar to memorizing test answers without understanding concepts
• Need methods to make models more reliable and generalizable

10.10.2 What is Shrinkage?

• Technique to prevent overfitting
• Makes model predictions more conservative and reliable
• Acts like a “leash” on model coefficients
• Helps handle regression to the mean

10.10.3 Example

• Study of 10 different medical treatments
• Some treatments appear very effective by chance
• When tested on new patients, effects usually less extreme
• Natural tendency for extreme results to move toward average
• This movement toward average is “shrinkage”

10.10.4 Key Shrinkage Methods

10.10.4.1 1. Ridge Regression

• Adds penalty to prevent large coefficients
• Characteristics:

– Like rubber band pulling coefficients toward zero
– Keeps all variables in model
– Reduces size of effects
– Ideal for correlated predictors
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10.10.4.2 2. LASSO Regression

• Least Absolute Shrinkage and Selection Operator
• Characteristics:

– Can force coefficients to exactly zero
– Performs variable selection
– Creates simpler models
– Good for identifying important variables

10.10.5 Benefits of Shrinkage

1. More stable predictions
2. Better performance on new data
3. Protection against overfitting
4. More reliable assessment of variable importance

10.10.6 Key Takeaway

• Shrinkage represents statistical humility
• Prevents extreme predictions based on limited data
• Makes models more reliable and practical

10.11 Data Reduction Methods

10.11.1 Definition

• Process of reducing number of parameters in statistical models
• Focus on dimension reduction without using response variable Y
• “Unsupervised” approach to prevent overfitting

10.11.2 Purpose

• Improve model stability
• Reduce overfitting
• Maintain statistical inference validity
• Handle situations with many predictors relative to sample size
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10.11.3 Redundancy Analysis

1. Core Concept

• Identifies predictors well-predicted by other predictors
• Removes redundant variables systematically

2. Implementation Process

• Convert predictors to appropriate forms
– Continuous → restricted cubic splines
– Categorical → dummy variables

• Use OLS for prediction
• Remove highest R² predictors
• Iterate until threshold reached

10.11.4 Variable Clustering

1. Purpose

• Group related predictors
• Identify independent dimensions
• Simplify model structure

2. Methods

• Statistical clustering with correlations
• Principal component analysis (oblique rotation)
• Hierarchical cluster analysis

3. Important Considerations

• Use robust measures for skewed variables
• Consider rank-based measures
• Hoeffding’s D for non-monotonic relationships

10.11.5 Variable Transformation and Scaling

1. Key Methods

• Maximum Total Variance (MTV)
• Maximum Generalized Variance (MGV)

2. Process Goals

• Optimize variable transformations
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• Maximize relationships between predictors
• Reduce complexity

3. Benefits

• Fewer nonlinear terms needed
• Better interpretability
• More meaningful combinations

10.11.6 Simple Scoring of Variable Clusters

1. Approaches

• First principal component
• Weighted sums
• Expert-assigned severity points

2. Common Applications

• Binary predictor groups
• Hierarchical scoring systems
• Implementation-focused solutions

10.12 Implementation Guidelines

10.12.1 Best Practices

1. Prioritize subject matter knowledge
2. Validate without response variable
3. Use independent data for validation
4. Document reduction decisions
5. Balance simplicity vs. information

10.12.2 Recommended Workflow

1. Start with redundancy analysis
2. Apply variable clustering
3. Transform within clusters if needed
4. Create simple scores where appropriate
5. Validate each step
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10.13 Key Considerations

10.13.1 Advantages

• Prevents overfitting
• Maintains statistical validity
• Improves model stability
• Enhances interpretability

10.13.2 Limitations

• Potential information loss
• Trade-off with complexity
• Need for validation

10.14 Discussion Points

10.14.1 Critical Questions

1. Choosing between methods
2. Determining optimal clusters
3. Balancing complexity and interpretability

10.14.2 Implementation Challenges

• Deciding on thresholds
• Handling mixed variable types
• Validating reduction decisions

10.14.3 Remarks

• Essential for stable modeling with many predictors
• Requires thoughtful method combination
• Focus on maintaining predictive power
• Ensure statistical validity
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10.15 Data Reduction Techniques Examples

First, let’s load the required packages and prepare our data:

library(Hmisc)
library(rms)
library(pcaPP)

# Read the data
df <- read.csv(here::here(
"datasets",
"phe.csv"))

• We have 149 rows of data
• We want to investigate the continuous outcome of suicide_rate
• m/15 rule: we can only have about 10 parameters in the model (we could be more liberal

in loosen it to 15 variables)

10.15.1 1. Redundancy Analysis

Redundancy analysis helps identify predictors that can be well-predicted from other vari-
ables:

# Perform redundancy analysis
df2 = df %>% dplyr::select(-suicide_rate)
redun_result <- redun(~ .,

data=df, r2=0.6)

# Print results
redun_result

Redundancy Analysis

~.

n: 149 p: 31 nk: 3

Number of NAs: 0

Transformation of target variables forced to be linear
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R-squared cutoff: 0.6 Type: ordinary

R^2 with which each variable can be predicted from all other variables:

children_youth_justice adult_carers_isolated_18
0.474 0.634

adult_carers_isolated_all_ages adult_carers_not_isolated
0.612 0.769

alcohol_rx_18 alcohol_rx_all_ages
0.965 0.998

alcohol_admissions_f alchol_admissions_m
0.999 1.000

alcohol_admissions_p children_leaving_care
0.686 0.832

depression domestic_abuse
0.738 0.729

self_harm_female self_harm_male
1.000 1.000

self_harm_persons opiates
1.000 0.952

lt_health_problems lt_unepmloyment
0.945 0.876

looked_after_children marital_breakup
0.889 0.706

old_pople_alone alone
0.956 0.906

self_reported_well_being smi
0.520 0.859

social_care_mh homeless
0.513 0.790

alcohol_rx drug_rx_non_opiate
0.761 0.787

drug_rx_opiate suicide_rate
0.658 0.639

unemployment
0.926

Rendundant variables:

self_harm_persons alchol_admissions_m alcohol_rx_all_ages alcohol_rx_18
old_pople_alone self_harm_male unemployment looked_after_children
lt_health_problems smi drug_rx_non_opiate opiates children_leaving_care
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alcohol_admissions_f homeless self_harm_female

Predicted from variables:

children_youth_justice adult_carers_isolated_18
adult_carers_isolated_all_ages adult_carers_not_isolated
alcohol_admissions_p depression domestic_abuse lt_unepmloyment
marital_breakup alone self_reported_well_being social_care_mh
alcohol_rx drug_rx_opiate suicide_rate

Variable Deleted R^2
1 self_harm_persons 1.000
2 alchol_admissions_m 1.000
3 alcohol_rx_all_ages 0.978
4 alcohol_rx_18 0.960
5 old_pople_alone 0.950
6 self_harm_male 0.927
7 unemployment 0.896
8 looked_after_children 0.866
9 lt_health_problems 0.802
10 smi 0.783
11 drug_rx_non_opiate 0.727
12 opiates 0.718
13 children_leaving_care 0.704
14 alcohol_admissions_f 0.684
15 homeless 0.663
16 self_harm_female 0.600

R^2 after later deletions
1 1 1 1 1 0.987 0.987 0.986 0.986 0.986 0.985 0.985 0.984 0.981 0.981 0.625
2 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.7 0.696 0.665
3 0.978 0.978 0.977 0.977 0.976 0.974 0.973 0.972 0.972 0.972 0.717 0.713 0.677
4 0.959 0.955 0.952 0.951 0.951 0.947 0.947 0.792 0.787 0.755 0.751 0.742
5 0.949 0.941 0.941 0.83 0.809 0.801 0.765 0.765 0.753 0.731 0.722
6 0.925 0.923 0.921 0.92 0.917 0.915 0.912 0.895 0.891 0.636
7 0.892 0.888 0.883 0.883 0.878 0.867 0.856 0.85 0.848
8 0.862 0.86 0.859 0.853 0.777 0.755 0.751 0.722
9 0.794 0.792 0.783 0.782 0.768 0.753 0.733
10 0.781 0.746 0.741 0.724 0.713 0.704
11 0.724 0.718 0.717 0.716 0.702
12 0.712 0.691 0.689 0.673
13 0.689 0.674 0.637
14 0.681 0.656
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15 0.657
16

As with our section on multicollinarity, we can see that a number of variables are redundant.
If we were to remove all these variables we would at least satisfy m/10 which is a bit more
liberal than the m/15 guidance.

10.15.2 2. Variable Clustering

Let’s perform hierarchical clustering on our variables to identify related groups:

# Perform variable clustering
vc <- varclus(~ .,

data=df2, sim= 'hoeffding')

# Plot dendrogram
plot(vc)
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• We can see a lot of the variables clustering together
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10.15.3 3. Principal Components Analysis

Let’s examine the data structure using PCA:

# Perform PCA
pca_result <- princomp(df2, cor=TRUE)

# Scree plot
plot(pca_result, type="lines", main="Scree Plot")
abline(h=1, lty=2, col="red") # Kaiser criterion line

Scree Plot

V
ar
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8

10

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

# Print variance explained by first few components
summary(pca_result, loadings=TRUE, cutoff=0.3)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 3.1327307 2.2436841 1.51857984 1.33713169 1.21224371
Proportion of Variance 0.3271334 0.1678039 0.07686949 0.05959737 0.04898449
Cumulative Proportion 0.3271334 0.4949373 0.57180682 0.63140419 0.68038869

Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Standard deviation 1.07625280 1.01836888 0.9747646 0.92320127 0.86023787
Proportion of Variance 0.03861067 0.03456917 0.0316722 0.02841002 0.02466697
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Cumulative Proportion 0.71899936 0.75356853 0.7852407 0.81365075 0.83831772
Comp.11 Comp.12 Comp.13 Comp.14 Comp.15

Standard deviation 0.76164102 0.74326524 0.70575177 0.67895928 0.65072428
Proportion of Variance 0.01933657 0.01841477 0.01660285 0.01536619 0.01411474
Cumulative Proportion 0.85765429 0.87606907 0.89267192 0.90803811 0.92215284

Comp.16 Comp.17 Comp.18 Comp.19 Comp.20
Standard deviation 0.62502778 0.57314172 0.56636534 0.55357002 0.478567350
Proportion of Variance 0.01302199 0.01094971 0.01069232 0.01021466 0.007634224
Cumulative Proportion 0.93517484 0.94612455 0.95681687 0.96703153 0.974665755

Comp.21 Comp.22 Comp.23 Comp.24
Standard deviation 0.473155304 0.413788556 0.340046283 0.302671397
Proportion of Variance 0.007462531 0.005707366 0.003854382 0.003053666
Cumulative Proportion 0.982128287 0.987835652 0.991690035 0.994743701

Comp.25 Comp.26 Comp.27 Comp.28
Standard deviation 0.250796490 0.224198463 0.174227171 0.1176538993
Proportion of Variance 0.002096629 0.001675498 0.001011837 0.0004614147
Cumulative Proportion 0.996840330 0.998515828 0.999527665 0.9999890799

Comp.29 Comp.30
Standard deviation 1.669952e-02 6.980650e-03
Proportion of Variance 9.295803e-06 1.624316e-06
Cumulative Proportion 9.999984e-01 1.000000e+00

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7

children_youth_justice 0.378 0.580
adult_carers_isolated_18 0.413 0.307
adult_carers_isolated_all_ages
adult_carers_not_isolated
alcohol_rx_18
alcohol_rx_all_ages
alcohol_admissions_f
alchol_admissions_m
alcohol_admissions_p
children_leaving_care
depression
domestic_abuse 0.342
self_harm_female
self_harm_male
self_harm_persons
opiates
lt_health_problems
lt_unepmloyment
looked_after_children
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marital_breakup
old_pople_alone 0.338
alone -0.434
self_reported_well_being 0.381
smi -0.366
social_care_mh 0.488
homeless -0.325
alcohol_rx -0.543
drug_rx_non_opiate -0.558
drug_rx_opiate -0.397
unemployment

Comp.8 Comp.9 Comp.10 Comp.11 Comp.12 Comp.13
children_youth_justice
adult_carers_isolated_18
adult_carers_isolated_all_ages 0.351 -0.499 -0.301
adult_carers_not_isolated
alcohol_rx_18
alcohol_rx_all_ages
alcohol_admissions_f
alchol_admissions_m
alcohol_admissions_p -0.378
children_leaving_care
depression 0.340 0.373
domestic_abuse -0.397 0.304
self_harm_female
self_harm_male
self_harm_persons
opiates 0.335
lt_health_problems
lt_unepmloyment
looked_after_children
marital_breakup -0.316 -0.366 0.442
old_pople_alone -0.344
alone
self_reported_well_being 0.605 -0.374
smi
social_care_mh -0.618
homeless
alcohol_rx
drug_rx_non_opiate
drug_rx_opiate 0.312 -0.320
unemployment

Comp.14 Comp.15 Comp.16 Comp.17 Comp.18 Comp.19
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children_youth_justice 0.376
adult_carers_isolated_18 -0.505 -0.378
adult_carers_isolated_all_ages 0.304
adult_carers_not_isolated -0.390 0.510 -0.459
alcohol_rx_18
alcohol_rx_all_ages
alcohol_admissions_f
alchol_admissions_m
alcohol_admissions_p 0.376 -0.366
children_leaving_care 0.393
depression -0.304 0.406 -0.387
domestic_abuse 0.311
self_harm_female
self_harm_male
self_harm_persons
opiates -0.305
lt_health_problems
lt_unepmloyment -0.448 -0.334
looked_after_children
marital_breakup
old_pople_alone
alone
self_reported_well_being
smi
social_care_mh
homeless 0.483
alcohol_rx
drug_rx_non_opiate 0.338
drug_rx_opiate -0.382
unemployment

Comp.20 Comp.21 Comp.22 Comp.23 Comp.24 Comp.25
children_youth_justice
adult_carers_isolated_18
adult_carers_isolated_all_ages
adult_carers_not_isolated
alcohol_rx_18
alcohol_rx_all_ages
alcohol_admissions_f
alchol_admissions_m
alcohol_admissions_p
children_leaving_care -0.469
depression
domestic_abuse
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self_harm_female 0.495
self_harm_male -0.668
self_harm_persons
opiates
lt_health_problems 0.423
lt_unepmloyment 0.422
looked_after_children 0.634 0.429
marital_breakup -0.370
old_pople_alone 0.307
alone -0.441
self_reported_well_being
smi 0.561 -0.314
social_care_mh
homeless 0.349
alcohol_rx 0.525
drug_rx_non_opiate -0.316 -0.454
drug_rx_opiate
unemployment -0.659

Comp.26 Comp.27 Comp.28 Comp.29 Comp.30
children_youth_justice
adult_carers_isolated_18
adult_carers_isolated_all_ages
adult_carers_not_isolated
alcohol_rx_18 0.342 -0.625
alcohol_rx_all_ages -0.760
alcohol_admissions_f 0.590 0.513
alchol_admissions_m -0.806
alcohol_admissions_p
children_leaving_care
depression
domestic_abuse
self_harm_female 0.487
self_harm_male -0.353 0.338
self_harm_persons -0.804
opiates -0.379 0.435
lt_health_problems 0.479
lt_unepmloyment
looked_after_children
marital_breakup
old_pople_alone -0.488
alone
self_reported_well_being
smi
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social_care_mh
homeless
alcohol_rx
drug_rx_non_opiate
drug_rx_opiate
unemployment -0.312

10.15.4 4. Sparse Principal Components Analysis

Using pcaPP for robust sparse PCA.

# Perform sparse PCA
sparse_pca <- sPCAgrid(df2, k=10, method = 'sd' ,
center =mean , scale =sd , scores =TRUE ,
maxiter =10)

# Plot variance explained
plot(sparse_pca,type = 'lines' , main= ' ')
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# Print loadings
print(sparse_pca$loadings)
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Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7

children_youth_justice 1.000
adult_carers_isolated_18
adult_carers_isolated_all_ages 0.464
adult_carers_not_isolated 0.252
alcohol_rx_18 0.295
alcohol_rx_all_ages 0.305
alcohol_admissions_f 0.295
alchol_admissions_m 0.303
alcohol_admissions_p 0.161
children_leaving_care 0.248
depression 0.111
domestic_abuse 0.106 0.791
self_harm_female 0.131 -0.264
self_harm_male 0.222
self_harm_persons 0.176
opiates 0.278
lt_health_problems 0.210
lt_unepmloyment 0.226
looked_after_children 0.300
marital_breakup 0.113
old_pople_alone 0.636
alone 0.122 -0.607
self_reported_well_being 0.965
smi 0.122
social_care_mh 1.000
homeless -0.613
alcohol_rx 0.707
drug_rx_non_opiate 0.707
drug_rx_opiate
unemployment 0.234

Comp.8 Comp.9 Comp.10
children_youth_justice
adult_carers_isolated_18
adult_carers_isolated_all_ages
adult_carers_not_isolated
alcohol_rx_18
alcohol_rx_all_ages
alcohol_admissions_f
alchol_admissions_m
alcohol_admissions_p -0.574
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children_leaving_care
depression 0.903
domestic_abuse
self_harm_female
self_harm_male
self_harm_persons 0.444
opiates
lt_health_problems
lt_unepmloyment
looked_after_children
marital_breakup 0.819
old_pople_alone
alone
self_reported_well_being
smi
social_care_mh
homeless
alcohol_rx
drug_rx_non_opiate
drug_rx_opiate 0.896
unemployment -0.426

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
Cumulative Var 0.033 0.067 0.100 0.133 0.167 0.200 0.233 0.267 0.300

Comp.10
SS loadings 1.000
Proportion Var 0.033
Cumulative Var 0.333

Like are variable clutstering, we can see that lots of variables load onto the first principal
component. We could add component 1 to our regression model and keep the rest of the
variables (not those loaded on comp. 1).

However, let’s instead use stepwise regression only on the preditors in combination with sparse
PCA to select variables for 10 components in our model.

• Stepwise here tells us which predictors that load onto each PC are needed to predict that
pc
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spca1 <- princmp(df2, sw = TRUE ,
k = 10,
kapprox = 10,
method = "sparse",
cor = TRUE,
nvmax = 30)

print(spca1)

Sparse Principal Components Analysis

Stepwise Approximations to PCs With Cumulative R^2

PC 1
alchol_admissions_m (0.975) + self_harm_persons (0.999) +
looked_after_children (1)

PC 2
adult_carers_isolated_all_ages (0.759) + homeless (0.978) +
old_pople_alone (1)

PC 3
drug_rx_non_opiate (0.89) + alcohol_rx (1)

PC 4
self_harm_female (1)

PC 5
adult_carers_isolated_18 (0.861) + self_harm_female (1)

PC 6
self_harm_female (0.993) + self_reported_well_being (1)

PC 7
social_care_mh (1)

PC 8
children_youth_justice (1)

PC 9
domestic_abuse (0.872) + alone (1)

226



PC 10
depression (0.875) + unemployment (0.999) + old_pople_alone (1)

We get 10 components, some with many predictors, some with only one.

10.15.5 Put it all together

Using theory, we could decide to create cluster scores for some of these components, while
others with only 2 variables we might want to just eliminate one of the variables.

For those that we want to have a composite score, we can use the first principal component of
their scores. Or, if we want to use this scoring outside of this context we can get a regression
model on the first PC.

Let me demonstrate with our first component from the sparse PCA.

# Get pc scores for the first sparse PC variables
pc1_scores = princmp(df2[,c(names(spca1$sw[[1]]))],

method = "regular",
cor = TRUE)$scores[,1]

df2$pc1_scores = pc1_scores

mod1 = lm(pc1_scores~alchol_admissions_m + self_harm_persons , data = df2)

parameters::parameters(mod1) |> print_md()

Parameter Coefficient SE 95% CI t(146) p
(Intercept) -6.53 0.18 (-6.88, -6.17) -36.38 < .001
alchol admissions m 3.63e-03 1.47e-04 (3.34e-03, 3.92e-03) 24.70 < .001
self harm persons 9.09e-03 4.38e-04 (8.22e-03, 9.95e-03) 20.75 < .001

Now, we could report those regression coefficients to get a pretty reasonable estimate of the
scoring for that component of the model.

Now, let’s get the second and third scores as well.

# Get pc scores for the second sparse PC variables
pc2_scores = princmp(df2[,c(names(spca1$sw[[2]]))],

method = "regular",
cor = TRUE)$scores[,1]
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df2$pc2_scores = pc2_scores

pc3_scores = princmp(df2[,c(names(spca1$sw[[3]]))],
method = "regular",
cor = TRUE)$scores[,1]

df2$pc3_scores = pc3_scores

For the rest, we will simplify things a bit and just use the first variable of the remaining 10
sparse PCA components.

Let’s now fit a model based using our 3 PCs and the 7 other variables we selected.

df_all = df2 %>%
select(pc1_scores, pc2_scores, pc3_scores,

self_harm_female,
adult_carers_isolated_18,
self_harm_female,
social_care_mh,
children_youth_justice,
domestic_abuse,
depression)

df_all$suicide_rate = df$suicide_rate

# 10 predictors, 1 outcome, 149 observations
model_all = lm(
data = df_all,
suicide_rate ~ .

)

summary(model_all)

Call:
lm(formula = suicide_rate ~ ., data = df_all)

Residuals:
Min 1Q Median 3Q Max

-4.2067 -1.1131 -0.1051 0.9371 4.1430

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.6296409 1.6223906 5.935 2.22e-08 ***
pc1_scores 0.5747571 0.1555263 3.696 0.000315 ***
pc2_scores 0.3436984 0.1388871 2.475 0.014539 *
pc3_scores -0.1009508 0.1084578 -0.931 0.353579
self_harm_female 0.0025597 0.0024544 1.043 0.298819
adult_carers_isolated_18 0.0239721 0.0243409 0.985 0.326408
social_care_mh 0.0010556 0.0004836 2.183 0.030729 *
children_youth_justice -0.0310969 0.0241586 -1.287 0.200165
domestic_abuse 0.0266173 0.0359734 0.740 0.460599
depression -0.1202582 0.1114831 -1.079 0.282584
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.729 on 139 degrees of freedom
Multiple R-squared: 0.3853, Adjusted R-squared: 0.3455
F-statistic: 9.681 on 9 and 139 DF, p-value: 2.122e-11

Now let’s check our assumptions:

check_model(model_all)
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10.15.6 Analysis Summary

1. From the redundancy analysis, we can identify variables that are highly predictable from
others, helping reduce dimensionality while maintaining information.

2. The variable clustering dendrogram shows natural groupings in our data, which can
guide feature selection or creation of composite scores.

3. The PCA results show how many components are needed to explain a certain percentage
of variance in the data.

4. Sparse PCA provides a more interpretable solution by forcing some loadings to zero while
maintaining most of the explained variance.

10.15.7 Recommendations for Data Reduction

Based on these analyses, we can recommend:

1. Consider combining highly correlated variables within the same cluster into composite
scores

2. Use the first few principal components if dimension reduction is needed while maintaining
maximum variance

3. For interpretability, consider using the sparse PCA solution which provides clearer vari-
able groupings

4. Remove redundant variables identified in the redundancy analysis on an as needed basis.
Justify your choices!

These techniques provide different perspectives on data reduction, and the choice depends
on the specific needs of the analysis (interpretability, variance preservation, or prediction
accuracy).
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11 Outliers and Influential Observations

Here are some code chunks that setup this chapter.

# Here are the libraries I used
library(tidyverse) # standard
# need for a couple things to make knitted document to look nice
library(knitr)
# need to read in data
library(readr)
# allows for stat_cor in ggplots
library(ggpubr)
# Needed for autoplot to work on lm()
library(ggfortify)
# allows me to organize the graphs in a grid
library(gridExtra)
# need for some regression stuff like vif
library(car)
library(GGally)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())
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11.1 Explainable statistical learning in public health for policy
development: the case of real-world suicide data

We will work with data made available from this paper:

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0796-7

If you want to go really in-depth of how you deal with data, this article goes into a lot of
detail.

pheRed <- read_csv(here::here("datasets",
"phe_reduced.csv"))

11.1.1 Variables. A LOT!

colnames(pheRed)

[1] "children_youth_justice" "adult_carers_isolated_all_ages"
[3] "alcohol_admissions_p" "children_leaving_care"
[5] "depression" "domestic_abuse"
[7] "self_harm_persons" "opiates"
[9] "marital_breakup" "alone"
[11] "self_reported_well_being" "social_care_mh"
[13] "homeless" "alcohol_rx"
[15] "drug_rx_opiate" "suicide_rate"

11.2 We have a model!

Using stepwise regression, we (supposedly) got a “good” model for “predicting” suicide rates:

fullModel <- lm(suicide_rate ~ ., pheRed)

model <- step(fullModel, trace = 0)

summary(model)
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Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + marital_breakup + social_care_mh + homeless, data = pheRed)

Residuals:
Min 1Q Median 3Q Max

-4.2494 -1.1217 -0.1575 0.9558 4.1356

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8392785 1.4371175 3.367 0.000977 ***
children_leaving_care 0.0423124 0.0197194 2.146 0.033595 *
self_harm_persons 0.0056140 0.0022875 2.454 0.015329 *
opiates 0.1055031 0.0507785 2.078 0.039537 *
marital_breakup 0.1878726 0.1344548 1.397 0.164505
social_care_mh 0.0008995 0.0004784 1.880 0.062108 .
homeless -0.2066931 0.0749597 -2.757 0.006593 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.69 on 142 degrees of freedom
Multiple R-squared: 0.4, Adjusted R-squared: 0.3746
F-statistic: 15.78 on 6 and 142 DF, p-value: 7.784e-14

autoplot(model)
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Is this a good model? Maybe, but there appear to be outliers.

Now we are going to learn more about that bottom left plot.

11.3 Leverage and Influence

We have several observations in our dataset which are composed an observed value of 𝑦𝑖 and
the corresponding predictor variables 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖

.

We make a prediction

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥1𝑖 + ̂𝛽2𝑥2𝑖 + ... + ̂𝛽𝑝𝑥𝑝𝑖

Leverage is how much potential influence an observation has on a regression line.

Leverage for the 𝑖𝑡ℎ observation in a dataset is denoted by ℎ𝑖.

Leverage is a measure of how far 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖
deviate from the rest of the predictor variable

observations.

Influence is a measure of how much of an effect the 𝑖𝑡ℎ observation has on the regression
line/surface.
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11.3.1 Low/High leverage versus Low/High Influence

For simplicities sake, we’ll look at this with just simple linear regression model.

Here’s a regression model with perfectly well behaved

0

100

200

0 5 10 15 20
x

y

Now here are two plots. They each have an outlier. In red is the regression line that results
from the outlier being removed.

• The left plot has an outlier that is close to the mean of 𝑥, and therefore has low leverage.
Since the lines are close, this the outlier is low influence.

• The one one the right shows an outlier with high distance from the center of 𝑥 equating to
high leverage. The discrepancy between the lines with and without the outlier indicates
high influence.
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Coefficients for model with no outliers:

coeff.summary(lm(y~x, data))

term estimate std.error statistic p.value
(Intercept) 5.896215 5.4265974 1.08654 0.2826666
x 10.044226 0.5231077 19.20107 0.0000000

Coefficients for the the model with a high leverage but low influence outlier.

coeff.summary(lm(y~x, dat1))

term estimate std.error statistic p.value
(Intercept) 3.527027 8.1027541 0.4352875 0.6652652
x 9.975550 0.7821832 12.7534696 0.0000000

Coefficients for the the model with a high leverage but high influence outlier.
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coeff.summary(lm(y~x, dat2))

term estimate std.error statistic p.value
(Intercept) 20.710068 8.9305015 2.319026 0.0246064
x 8.013461 0.8229571 9.737397 0.0000000

11.4 Finding High Influence Points

There are three main methods for determining high influence points:

• DFFITS: Determines effect of observation 𝑖 on its estimate ̂𝑦𝑖.
• Cook’s Distance (Cook’s D): Determines effect of an observation on the overall regression

surface.

– Cook’s D and DFFITS are nearly identical accept for some slight tweaks. They
have different cutoffs for “troublesome” values but tend to agree.

• DFBETAS: Determines effect of an observation on the each individual predictor coeffi-
cient.

– Influence is determined by an observation being an outlier with respect to a predictor
variable.

– Some outliers only are outliers in terms of a single predictor variable.

11.4.1 DFFITS

• ̂𝑦𝑖 is the predicted value of observation 𝑖 in the data.
• ̂𝑦𝑖(𝑖) is the predicted value of observation 𝑖 in the data when the regression line is com-

puted without observation 𝑖.
– The notation kind of sucks, IMO, but it’s difficult to communicate the information

in such a compact form. Just repeat the definitions in your head 10 times.

• ℎ𝑖 is the leverage of observation 𝑖.
• 𝑀𝑆𝐸(𝑖) is the MSE of the regression model without observation 𝑖.

If 𝑦𝑖 and 𝑦𝑖(𝑖) differ by a “substantial” relative to the leverage, then the outlier may be con-
sidered problematic

𝐷𝐹𝐹𝐼𝑇 𝑆𝑖 =
̂𝑦𝑖 − ̂𝑦𝑖(𝑖)

√𝑀𝑆𝐸(𝑖) ⋅ ℎ𝑖
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There are a few different ways of determining if an observation has a “large” DFFITS value.

• For small to medium datasets, a 𝐷𝐹𝐹𝐼𝑇 𝑆 exceeding 1 (or -1) is problematic.
• For large datasets a 𝐷𝐹𝐹𝐼𝑇 𝑆 exceeding 2√𝑝/𝑛. Personally, I’d recommend 3√𝑝/𝑛

since DFFITS values are related to the 𝑡 distribution.
– Recall 𝑝 is the number of predictors.
– I’d say consider “large” to be 200 to 300 or more.
– This stuff is from way back when getting “large” amounts of data was quite a bit

harder/expensive.
– Defining “large” is such an ephemeral thing given this age of “big” data.

11.4.2 Cook’s Distance (D)

For obersvation 𝑖, Cook’s Distance 𝐷𝑖 is:

𝐷𝑖 =
∑𝑛

𝑖=1( ̂𝑦𝑖 − ̂𝑦𝑖(𝑖))
𝑝 ⋅ 𝑀𝑆𝐸

* Investigate observations with 𝐷𝑖 > 0.5, though some suggest 𝐷𝑖 > 1. * Cutoffs are a mess
honestly, you shold look for 𝐷𝑖 values that stick out and investigate.

11.4.3 DFBETAS

𝐷𝐹𝐵𝐸𝑇 𝐴𝑘(𝑖) is a measure of how much observation 𝑖 affects the estimated coefficient ̂𝛽𝑘

• ̂𝛽𝑘 is the estimated coefficient using the whole dataset.
• ̂𝛽𝑘(𝑖) estimated coefficient when observation 𝑖 is removed from the data.
• 𝑘 = 0, 1, 2, … 𝑝
• 𝑀𝑆𝐸(𝑖) is the MSE of the regression model without observation 𝑖.

𝐷𝐹𝐵𝐸𝑇 𝐴𝑘(𝑖) =
̂𝛽𝑘 − ̂𝛽𝑘(𝑖)

√𝑀𝑆𝐸(𝑖)𝑐𝑘𝑘

* A simple cutoff for 𝐷𝐹𝐵𝐸𝑇 𝐴𝑘(𝑖) > 1 indicates observation 𝑖 has a large effect on coefficient
𝑘. * In this situation, you should care what happens to the 𝑦-intercept ̂𝛽0

• $c_{kk} is a value computed using matrix theory. We aren’t a theory course so just
trust me, it’s a number that should be there. It will be caclulated for you.
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11.4.4 Custom Functions: Influential Observations calculator

In R, you do not need to install packages if you know how to program your own function.

You can create a function that does what you want. Here is a function that calculates all of
the influence measures for all the observations in your dataset.

Just run the code-chunk and now you can use the function.

influence.measures <- function (model){
is.influential <- function(infmat, n) {

k <- ncol(infmat) - 2
if (n <= k)

stop("too few cases, n < k")
absmat <- abs(infmat)
result <- cbind(absmat[, 1L:k] > 1, absmat[, k + 1] >

1, infmat[, k + 2]> 0.5)
dimnames(result) <- dimnames(infmat)
result

}
infl <- influence(model)
p <- model$rank
e <- weighted.residuals(model)
s <- sqrt(sum(e^2, na.rm = TRUE)/df.residual(model))
mqr <- stats:::qr.lm(model)
xxi <- chol2inv(mqr$qr, mqr$rank)
si <- infl$sigma
h <- infl$hat
dfbetas <- infl$coefficients/outer(infl$sigma,

sqrt(diag(xxi)))
vn <- variable.names(model)
vn[vn == "(Intercept)"] <- "1_"
colnames(dfbetas) <- paste("dfb", vn, sep = ".")
dffits <- e * sqrt(h)/(si * (1 - h))
if (any(ii <- is.infinite(dffits)))

dffits[ii] <- NaN
cooks.d <- (if (inherits(model, "glm"))

(infl$pear.res/(1 - h))^2 * h/(summary(model)$dispersion *
p)

else ((e/(s * (1 - h)))^2 * h)/p)
infmat <- cbind(dfbetas, dffit = dffits,

cook.d = cooks.d)
infmat[is.infinite(infmat)] <- NaN
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is.inf <- is.influential(infmat, sum(h > 0))
infmat %>%
as.data.frame() %>%
mutate(influential = apply(is.inf, 1, any))

}

11.4.5 Influence Measures on PHE data

TRUE or FALSE is indicated in the right most column influential for observations that are
declared “influential” accoding to the cutoffs discussed.

check <- influence.measures(model)

### This filters out any observations that are marked as "influential"

filter(check, influential)

dfb.1_ dfb.children_leaving_care dfb.self_harm_persons dfb.opiates
26 -0.2156744 0.19024198 0.13998317 -0.5959013
78 0.1388500 0.08110425 0.07286781 0.7102005

dfb.marital_breakup dfb.social_care_mh dfb.homeless dffit cook.d
26 0.06112809 1.908796 0.05305668 1.987504 0.5367057
78 -0.39154530 0.405517 -0.21624790 1.151952 0.1821697

influential
26 TRUE
78 TRUE

11.4.6 Plotting the Residuals, Cook’s Distance and Leverage

• The autoplot function has a which argument.
• It can create a total of 6 plots, each one having to do with residuals and influence

measures.
• autoplot(model, which = c(1, 2, 3, 4, 5, 6)) will plot all 6.

– Plot 1 is Residuals vs Fitted
– Plot 2 is the Normal Q-Q plot
– Plot 3 is the scale-location plot,
– Plot 4 is a plot of Cook’s distance for each observation.
– Plot 5 is Residuals vs Leverage
– Plot 6 is Cook’s Distance vs Leverage
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• Remove any numbers for plots you don’t want.

My personal preference would be 1, 2, 4, 5.

autoplot(model, which = c(1, 2, 4, 5))
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• The top left is the raw residuals, this is where we assess the bias and constant variance.

• The bottom right, are residuals calculated based on leverage.

– If the Standardized/Studentized Residual gets close to a value of 3, it may be
problematic.

Studentized Residuals (Sometimes called Standardized Residuals):

𝑡𝑖 = 𝑒𝑖

√𝑀𝑆𝐸(𝑖)(1 − ℎ𝑖)

It is EXTREMELY frustrating the language used.

Sometimes Standardized Residuals are:

𝑡𝑖 = 𝑒𝑖√
𝑀𝑆𝐸
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Which doesn’t account for leverage.

autoplot(model, which = c(3,5))
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If both plots used the same definition of standard residuals, the marked observations which
are the three most extreme residuals should be the observations.

:eyeroll:

11.5 You found some values that are high influence outliers, now
what?

If there are only a couple per 200 or so, you can probably just delete them and not worry about
it. If you have several, then there might be a bigger issue.

Ideally, you have more intimate knowledge of the data and would identify why outliers are not
representative of the general population you are trying to model. If so, deletion probably is
just fine.

Anyway, let’s pretend that that we can delete the two observations.

Let’s start with the worst one, 26.
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11.5.1 Removing 26

pheOut1 <- pheRed[-26, ]

modelOut1 <- lm(suicide_rate ~ children_leaving_care + self_harm_persons +
opiates + marital_breakup + social_care_mh + homeless, pheOut1)

summary(model)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + marital_breakup + social_care_mh + homeless, data = pheRed)

Residuals:
Min 1Q Median 3Q Max

-4.2494 -1.1217 -0.1575 0.9558 4.1356

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8392785 1.4371175 3.367 0.000977 ***
children_leaving_care 0.0423124 0.0197194 2.146 0.033595 *
self_harm_persons 0.0056140 0.0022875 2.454 0.015329 *
opiates 0.1055031 0.0507785 2.078 0.039537 *
marital_breakup 0.1878726 0.1344548 1.397 0.164505
social_care_mh 0.0008995 0.0004784 1.880 0.062108 .
homeless -0.2066931 0.0749597 -2.757 0.006593 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.69 on 142 degrees of freedom
Multiple R-squared: 0.4, Adjusted R-squared: 0.3746
F-statistic: 15.78 on 6 and 142 DF, p-value: 7.784e-14

summary(modelOut1)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + marital_breakup + social_care_mh + homeless, data = pheOut1)
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Residuals:
Min 1Q Median 3Q Max

-3.8140 -1.0888 -0.0478 0.8991 4.2533

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.142e+00 1.405e+00 3.658 0.000358 ***
children_leaving_care 3.865e-02 1.927e-02 2.006 0.046811 *
self_harm_persons 5.302e-03 2.233e-03 2.374 0.018957 *
opiates 1.350e-01 5.057e-02 2.670 0.008479 **
marital_breakup 1.799e-01 1.312e-01 1.371 0.172448
social_care_mh 9.008e-06 5.596e-04 0.016 0.987180
homeless -2.106e-01 7.312e-02 -2.880 0.004598 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.648 on 141 degrees of freedom
Multiple R-squared: 0.4011, Adjusted R-squared: 0.3756
F-statistic: 15.74 on 6 and 141 DF, p-value: 8.76e-14

The biggest change is in the social_care_mh variable. It seems almost complete useless
now.

autoplot(modelOut1, which = c(1, 2, 4, 5))
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11.5.2 Does stepwise

What if we did stepwise regression?

fullModelOut1 <- lm(suicide_rate ~ ., pheOut1)
stepModelOut1 <- step(fullModelOut1,

direction = "both", trace = 0)

summary(stepModelOut1)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + homeless, data = pheOut1)

Residuals:
Min 1Q Median 3Q Max

-3.8571 -1.0684 0.0412 1.0111 4.1770

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.936358 0.526026 13.186 < 2e-16 ***
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children_leaving_care 0.044349 0.018584 2.386 0.01832 *
self_harm_persons 0.006252 0.002120 2.948 0.00373 **
opiates 0.133822 0.048731 2.746 0.00681 **
homeless -0.222190 0.072526 -3.064 0.00261 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.647 on 143 degrees of freedom
Multiple R-squared: 0.393, Adjusted R-squared: 0.376
F-statistic: 23.15 on 4 and 143 DF, p-value: 9.143e-15

Now stepwise regression says the best model (according to AIC) appears to now only have
four variables with marital_breakup and social_care_mh now out of the model.

autoplot(stepModelOut1, which = c(1, 2, 4, 5))
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11.5.3 Removing the other outlier

The other outlier in the original data was 78, which is now 77 in the data with the first outlier
removed.
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pheOut2 <- pheRed[-c(26, 78), ]
modelOut2 <- lm(suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + marital_breakup + social_care_mh + homeless, pheOut2)

summary(modelOut2)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +

opiates + marital_breakup + social_care_mh + homeless, data = pheOut2)

Residuals:
Min 1Q Median 3Q Max

-3.6411 -1.1723 -0.0252 0.9400 3.7675

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.9507489 1.3713937 3.610 0.000426 ***
children_leaving_care 0.0366938 0.0187964 1.952 0.052914 .
self_harm_persons 0.0051023 0.0021779 2.343 0.020552 *
opiates 0.0987500 0.0508446 1.942 0.054121 .
marital_breakup 0.2352779 0.1292469 1.820 0.070838 .
social_care_mh -0.0002604 0.0005533 -0.471 0.638623
homeless -0.1936071 0.0715014 -2.708 0.007619 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.606 on 140 degrees of freedom
Multiple R-squared: 0.3686, Adjusted R-squared: 0.3416
F-statistic: 13.62 on 6 and 140 DF, p-value: 3.809e-12

What does stepwise regression say now?

fullModelOut2 <- lm(suicide_rate ~ ., pheOut2)
stepModelOut2 <- step(fullModelOut2, direction = "both", trace = 0)

summary(stepModelOut2)

Call:
lm(formula = suicide_rate ~ children_leaving_care + self_harm_persons +
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opiates + marital_breakup + homeless, data = pheOut2)

Residuals:
Min 1Q Median 3Q Max

-3.6265 -1.1113 -0.0436 0.9571 3.8287

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.926482 1.366636 3.605 0.000432 ***
children_leaving_care 0.038065 0.018518 2.056 0.041667 *
self_harm_persons 0.005157 0.002169 2.378 0.018764 *
opiates 0.093673 0.049550 1.890 0.060745 .
marital_breakup 0.228541 0.128097 1.784 0.076553 .
homeless -0.192514 0.071266 -2.701 0.007753 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.602 on 141 degrees of freedom
Multiple R-squared: 0.3676, Adjusted R-squared: 0.3452
F-statistic: 16.4 on 5 and 141 DF, p-value: 9.804e-13

And now marital_breakup breakup is back in?

autoplot(stepModelOut2)
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11.6 Which model to use

In short, there is no good answer.

• If you have absolutely no idea what’s going on and all you care about is prediction
accuracy, the stepwise regression approach may (read: MAY) be okay.

– This is an acceptable approach within exams and assignments for this course, but
should be scrutinized in real world modeling.

• If you know more about what’s going on and have specific experimental questions, then
use the models proposed by those questions and look at how useful they are.

– That’s kind of what they did in the paper.

There is no correct way to go about this.

11.7 Our model building process

1. Look at the full model. Coefficients, residuals, and all.
2. Investigate for multicollinearity and find ways to remove variables that may be problem-

atic.
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3. Look at the full model of the reduced data: coefficients, residuals, and all. You may
need to apply a transformation to the 𝑦 variable.

4. If you think it’s a good fit and can justify using it, you’re done.
5. Otherwise you need to start eliminating variables via knowledge of the data or specific

experimental questions ideally. If you are purely aiming for a predictive approach, you
may try stepwise regression. It is best to try all methods, but stepwise in both directions
is acceptable in this class.

6. Once you have found a reduced model, examine the residuals for outliers and violation
assumptions. Remove outliers if you can justify it.

7. If you don’t have outliers and your assumptions look good, you’re done.
8. Check if your variables still remain relevant. You may have to remove or add variables

that are now relevant. Use experimental questions or stepwise regression again…
9. Check residuals and outliers again. Hopefully everything looks. Good.

Everytime you messed with something in the model, you need to go back through and check
residuals, validity of transformations, etc.

I’ll throw you softballs in this class for the sake of your sanity.
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12 One-Way ANOVA

Here are some code chunks that setup this chapter.

# Here are the libraries I used
library(tidyverse) # standard
library(knitr) # need for a couple things to make knitted document to look nice
library(readr) # need to read in data
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car) # need for some regression stuff like vif
library(GGally)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())

Comparing More Than Two Group Means: Analysis of Variance (ANOVA or
AOV)

12.1 Review: Comparing Two Groups (Sections 7.1 - 7.7 of JB
Statistics)

Two-Sample Tests

𝐻0 ∶ 𝜇1 = 𝜇2

𝐻1 ∶ 𝜇1 ≠ 𝜇2
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12.1.1 The two-sample t-test: Pooled

Student’s two-sample 𝑡-test, and assumes unknown but equal population vari-
ances/standard deviations, i.e.,𝜎1 = 𝜎2.

We use a pooled sample variance estimate:

𝑠2
𝑝 = (𝑛1 − 1)𝑠2

1 + (𝑛2 − 1)𝑠2
2

(𝑛1 − 1) + (𝑛2 − 1)

𝑡 = ̄𝑦1 − ̄𝑦2

√𝑠2
𝑃 ( 1

𝑛1
+ 1

𝑛2
)

And the degrees of freedom is 𝑑𝑓 = 𝑛1 + 𝑛2 − 2

• Pro: Powerful if 𝜎1 = 𝜎2.

• Con: When is that true?

12.1.2 Welch’s two-sample t-test

Assume 𝜎1 ≠ 𝜎2
𝑡 = ̄𝑦1 − ̄𝑦2

√ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

𝑑𝑓 =
( 𝑠2

1
𝑛1

+ 𝑠2
2

𝑛2
)

2

(𝑠2
1/𝑛1)2

𝑛1−1 + (𝑠2
2/𝑛2)2

𝑛2−1

12.1.3 R command, t.test()

t.test(x, y)

By default, this performs Welch’s test. If you must perform Student’s test:

t.test(x, y, var.equal=TRUE)
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12.1.4 Hypothetical Example: Three Groups

Let’s consider having three groups.

• In the code below, the groups are generated and technically we know the populations
means.

• But we will only have the sample data in reality.

• How can we use three sample means at once to distinguish between three groups?

n = 200

data <- data.frame(x = rnorm(n, 0, 1),
y = rnorm(n, 1, 1), z = rnorm(n, 2, 1))

data <- gather(data, key = 'group', value = 'response')

# sample means

sample.means <- aggregate(x = response ~ group ,
data = data, FUN = mean)

sample.means$mu = c(0,1,2)

ggplot(data, aes(x = response, y = after_stat(density),
color = group, fill = group)) +

geom_density(alpha = 0.5) +
geom_vline(data = sample.means, aes(xintercept = response,

color = group))
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There is sampling variability associated with each sample mean. Run this code a few times
do see how much the sample means will change from sample to sample. How do we account
for the sampling variability when comparing three groups simultaneously? How do we even
compare three groups simultaneously?

12.2 Analysis of Variance

12.2.1 General Objective of Analysis of Variance (ANOVA)

First, we are going to have a hypothesis test involved with comparing several groups.

• The null hypothesis is going to be the similar to before, all the groups have equivalent
population means.

• The alternative is a bit trickier…

Hypotheses:

𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑡
𝐻1 ∶ not that...
Why not just do a bunch of separate t-tests?

If we have three groups:

254



• Compare group 1 to group 2.
• Compare group 1 to group 3.
• Compare group 2 to group 3.

And that would account for all possible pairings of groups. However, each of these would be
a separate hypothesis test.

These are called pair-wise comparisons.

In general, if there are 𝑡 groups, there are

(𝑡
2) = 𝑡(𝑡 − 1)

2

unique pair-wise comparisons.
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12.2.2 Familywise Error Rate: What happens when you do multiple hypothesis
tests

Say we had four treatment groups and we wanted to compare the means of all four groups to
see if any differed.

Through pairwise comparisons, we would end up with 4⋅3
2 = 6 total comparisons.

This would amount to 6 hypothesis tests to decide which if any group means differ.

• Assume each hypothesis test is done with the same Type I Error Rate 𝛼.
– Pr(Reject 𝐻0 | 𝐻0 True)

• This is known as a family of hypothesis tests, a set of hypothesis tests under one
objective.

• The Family Wise Error Rate (FWER) is the probability of making at least one
Type I Error among a family of hypothesis tests.

𝐹𝑊𝐸𝑅 = 1 − (1 − 𝛼)𝑐

> 𝛼 for 𝑐 = 2, 3, …

The following graph shows what happens to the FWER when the number of groups increases
and each pairwise comparison done with 𝛼 = 0.01.
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12.2.3 How ANOVA Works

The analysis of variance (ANOVA) is just that. It looks at two types of variability in the
data.

• Between or Treatment Variability: This is the variability between the groups which
is measured by essentially computing a the variance of the sample means between the
different groups.

• The Within or Error Variability: This is a collective measure of the variability within
the groups.

If the Between/Treatment Variability is noticeably larger than the the Within/Error variabil-
ity, we have strong evidence in favor that the least some groups have different population
means.

12.2.4 Treatment versus Error Variability Demos

Here is a simulated dataset with moderately small within/error variability relative
to the between/treatment variability

n = 200

data <- data.frame(x = rnorm(n, 0, 1),
y = rnorm(n, 1, 1), z = rnorm(n, 2, 1))

data <- gather(data, key = 'group', value = 'response')

sample.means <- aggregate(x = response ~ group ,
data = data, FUN = mean)

sample.means$mu = c(0,1,2)

ggplot(data, aes(x = response, y = after_stat(density),
color = group, fill = group)) +

geom_density(alpha = 0.5) +
geom_vline(data = sample.means, aes(xintercept = response,

color = group))
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Here is an example a very small within/error variability relative to the be-
tween/treatment variability.

n = 200

data <- data.frame(x = rnorm(n, 0, 0.1),
y = rnorm(n, 1, 0.1), z = rnorm(n, 2, 0.1))

data <- gather(data, key = 'group', value = 'response')

# sample means

sample.means <- aggregate(x = response ~ group ,
data = data, FUN = mean)

sample.means$mu = c(0,1,2)

ggplot(data, aes(x = response, y = ..density..,
color = group, fill = group)) +

geom_density(alpha = 0.5) +
geom_vline(data = sample.means, aes(xintercept = response,

color = group))

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0
response

de
ns

ity

group

x

y

z

260



Lastly, large within/error variability relative to between/treatment variability.

n = 200

data <- data.frame(x = rnorm(n, 0, 5),
y = rnorm(n, 1, 5), z = rnorm(n, 2, 5))

data <- gather(data, key = 'group', value = 'response')

# sample means

sample.means <- aggregate(x = response ~ group ,
data = data, FUN = mean)

sample.means$mu = c(0,1,2)

ggplot(data, aes(x = response, y = ..density..,
color = group, fill = group)) +

geom_density(alpha = 0.5) +
geom_vline(data = sample.means, aes(xintercept = response,

color = group))
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• In each situation, the population means are the same: 0, 1, and 2.
• In some situations it’s much easier to distinguish the groups than in others.
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12.3 Formulating ANOVA: Notation

• 𝑦𝑖𝑗 is the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ treatment group.

– 𝑖 = 1, … , 𝑡, where 𝑡 is the total number of treatment groups.
– 𝑗 = 1, … , 𝑛𝑖 where 𝑛𝑖 is the number of observations in treatment group 𝑖.

• 𝑦𝑖. = ∑𝑛𝑖
𝑗=1

𝑦𝑖𝑗
𝑛𝑖

is the mean of treatment group 𝑖.

• ̄𝑦.. = ∑𝑡
𝑖=1 ∑𝑛𝑖

𝑗=1
𝑦𝑖𝑗
𝑁 is the over all mean of all observations.

– 𝑁 is the total number of observations.

12.3.1 Sums of Squares

Sum of Squares for the treatments

𝑆𝑆𝑇 =
𝑡

∑
𝑖=1

𝑛𝑖 (𝑦𝑖. − ̄𝑦..)
2

Sum of squares for the errors

𝑆𝑆𝐸 =
𝑡

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦𝑖.)
2

With each sum of squares, there is an associated degrees of freedom.

• Treatment: 𝑑𝑓𝑡 = 𝑡 − 1
• Error: 𝑑𝑓𝑒 = 𝑁 − 𝑡

12.3.2 Mean Squares

𝑀𝑆𝑇 = 𝑆𝑆𝑇
𝑡 − 1

𝑀𝑆𝐸 = 𝑆𝑆𝐸
𝑁 − 𝑡

12.3.3 Test Statistic

𝐹𝑡 = 𝑀𝑆𝑇
𝑀𝑆𝐸 .
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12.3.4 F-Distribution

Under the the following assumptions:

1. The null hypothesis is true, i.e., all groups have equivalent means,
2. The groups are indendent and normally distributed,
3. The groups all have equivalent variances,

the test statistic 𝐹𝑡 follows an 𝐹(𝑡 − 1, 𝑁 − 𝑡) distribution.

12.3.5 F-Distribution Visualization
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12.4 How is this a “Linear Model”

12.4.1 Means Model

Means Model:

𝑦 = 𝜇𝑖 + 𝜖
Which leads to the hypotheses in ANOVA:

𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑡

𝐻1: The means are not all equal.

12.4.2 Effects Model

Effects Model:

𝑦 = 𝜇 + 𝜏𝑖 + 𝜖
The 𝜏𝑖’s are the shift parameters that cause the groups to differ.

Which leads to an equivalent set of hypotheses:

𝐻0 ∶ 𝜏1 = ⋯ = 𝜏𝑡 = 0
𝐻1 ∶ Not 𝐻0

12.5 OASIS MRIs

Variables in OASIS data

• Group: whether subject is demented, nondemented, or converted.
• Visit: (Not relevant) which visit number of the MRI
• Gender: M or F
• MR Delay: (Not relevant) time between each successive MRI. First MRIs
• Hand: Handedness of subject. All patients were R (right-handed)
• Age: Age in years
• Educ: Years of education
• SES: Socioeconomic status 1 - 5, low to high SES (arbitrary cutoffs most likely)
• MMSE: Mini Mental State Examination
• CDR: Clinical Dementia Rating, 0 - 2. 0 is non-dementia, CDR > 0 is severity of

dementia.
• eTIV: Estimated Total Intracranial Volume (milliliters?)
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• nWBV: Normalized Whole Brain Volume; Brain volume is normalized by intercranial
volume to put subjects of different sizes and gender on the same scale. To my best
knowledge…

• ASF: Atlas Scaling Factor; I tried investigating this but that’s some rabbit hole that is
very deep apparently. It has something to do with the normalization I think.

Unlike before, we’re going to compare all three patient groups in the OASIS data: Demented,
Nondemented, and Converted.|

Converted patients are those that entered the study that were no diagnosed with dementia,
and then by the time the study ended they had been diagnosed with dementia.

The objective is to assess the Normalized Whole Brain Volume nWBV of the different groups
and see if the mean nWBV differs.

oasis <- read_csv(here::here("datasets",'oasis.csv'))
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12.5.1 Examining the data

Let’s look at the nWBVs overall.

nWBVmean <- mean(oasis$nWBV)

### geom_density() produces a "smoothed" histogram.
### if you wanted a histogram, you could use geom_histogram()

ggplot(oasis, aes(x = nWBV)) +
geom_density(fill = "lavender") +
geom_vline(xintercept = nWBVmean)
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Now let’s look at the grouped data.

# Get group means
## You can ignore this...
ybars <- aggregate(x = nWBV ~ Group, data = oasis,

FUN = mean)

ggplot(oasis, aes(x = nWBV, color = Group,
fill = Group)) +

geom_density(alpha = 0.1) +
geom_vline(data = ybars, aes(xintercept = nWBV,

color = Group))
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### When comparing groups, a standard way is to use boxplots.
ggplot(oasis, aes(y = nWBV, color = Group,

x = Group)) +
geom_boxplot()
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12.5.2 ANOVA in R: its lm() again

There are a few ways to do ANOVA in R. The approach that is most adaptable is to use the
lm() function.

lm(formula = y ~ x, data)

So we create a linear model with nWBV as y and Group as x.

fit.lm <- lm(nWBV ~ Group, data = oasis)

In general, on lm objects we use the summary() function.

summary(fit.lm)

Call:
lm(formula = nWBV ~ Group, data = oasis)

Residuals:
Min 1Q Median 3Q Max

-0.080200 -0.022459 0.000674 0.023080 0.090780

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.737860 0.009421 78.317 <2e-16 ***
GroupDemented -0.013503 0.010401 -1.298 0.196
GroupNondemented 0.008202 0.010297 0.797 0.427
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03525 on 147 degrees of freedom
Multiple R-squared: 0.0806, Adjusted R-squared: 0.06809
F-statistic: 6.443 on 2 and 147 DF, p-value: 0.002078

This technically contains all the information we need. Specifically look at the bottom of the
summary where there is information on the F-statistic, degrees of freedom and p-value.

To get this information displayed in a more traditional format for an ANOVA, use theanova()
function on an lm object.
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anova(fit.lm)

Analysis of Variance Table

Response: nWBV
Df Sum Sq Mean Sq F value Pr(>F)

Group 2 0.016014 0.0080069 6.4431 0.002078 **
Residuals 147 0.182677 0.0012427
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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12.5.3 Alternative: aov()

An alternative is to use the aov() function in the same way:

fit.aov <- aov(nWBV ~ Group, data = oasis)

For an aov object, just use the summary() function to get results in a similar manner.

summary(fit.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.01601 0.008007 6.443 0.00208 **
Residuals 147 0.18268 0.001243
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In any of these cases, we have very strong discrepancy with null model (i.e., all means are
equal) for a different mean nWBV between the different groups of patients.
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12.5.4 Statistical Versus Practical Significance

Let’s look back at the nWBVs split by group:

ggplot(oasis, aes(x = nWBV, color = Group,
fill = Group)) +

geom_density(alpha = 0.10) +
geom_vline(data = ybars, aes(xintercept = nWBV,

color = Group))
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And here are the means of each group.

# This is some tidyverse magic.

oasis %>%
group_by(Group) %>%
summarise(mean = mean(nWBV))

# A tibble: 3 x 2
Group mean
<chr> <dbl>

1 Converted 0.738
2 Demented 0.724
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3 Nondemented 0.746

# Or using the model using modelbased

library(modelbased)
fit.aov %>%
estimate_means()

Estimated Marginal Means

Group | Mean | SE | 95% CI
--------------------------------------------
Nondemented | 0.75 | 4.15e-03 | [0.74, 0.75]
Demented | 0.72 | 4.41e-03 | [0.72, 0.73]
Converted | 0.74 | 9.42e-03 | [0.72, 0.76]

Marginal means estimated at Group
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Among the groups, the biggest difference in means between the demented and non-demented
group is about 0.02.

Is that a big difference?

• Statistically, it is with 𝑝 = .0021.
• On a relative scale it is about a 3% difference.

– Is this a practical difference, i.e., does it matter?
– That would be very dependent on the field, the research question, the researcher,

the impacts, and so on…
– What is an important difference is a specific matter that should be discussed and

defined.
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13 Multiple Comparisons

Here are some code chunks that setup this document.

# Here are the libraries I used
library(tidyverse) # standard
library(knitr)
library(readr)
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car) # need for some regression stuff like vif
library(GGally)
# library(mosaic)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())
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Suppose we did a single test between two group means:

We would have:
𝑡 = 𝑦𝑖 − 𝑦𝑗

𝑆𝐸𝑦𝑖−𝑦𝑗

Then we get a p-value based on that t-distribution with some degrees of freedom defined by the
method we were using for the comparison, e.g., equal or unequal variance two-sample t-test,
ANOVA, and others…

Null Hypothesis Significance Testing (NHST) Approach

In NHST we “Reject 𝐻0 if 𝑝 ≤ 𝛼.

• 𝛼 is the Type I error rate: “The probability of rejecting 𝐻0 when 𝐻0 is true.”

– This would be a “false positive” or a “false discovery”

P-value as a spectrum.

• We would talk about the strength of evidence for declaring 𝜇𝑖 − 𝜇𝑗.

– This approach would not have a Type I error per se.
– The idea of a Type I error would fall on a spectrum as well.
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13.1 Multiple testing problem

In the ANOVA setting, should we Reject 𝐻0 (all means are equal), or declare the strength of
evidence is sufficient to be confident of a difference.

• The next step is to look and see which specific groups/means differ.

• This involves pairwise comparisons.

𝑡 = 𝑦𝑖 − 𝑦𝑗

√𝑀𝑆𝐸 ( 1
𝑛𝑖

+ 1
𝑛2

)

• When 2 or more comparisons are done we have more than one Type I error, we have a
“Family” of tests.

• This where we have the concept of Family-Wise Error Rate (FWER).

– This is defined to be the probability of making at least one Type I error.
– If all the tests are “independent” then 𝐹𝑊𝐸𝑅 = 1−(1−𝛼𝑐)𝑘 where 𝛼𝑐 is the type I

error rate for each individual comparison and 𝑘 is the total number of comparisons
in the family of tests.

• As FWER increases, the reliability of the individual comparisons decreases.

• The number of possible pairwise comparisons among 𝑡 groups is 𝑘 = 𝑡(𝑡−1)
2

If we did not control the FWER error rate with 𝛼𝑐 = 0.01:

Table 13.1: FWER when comparing many groups via pairwise comparisons

Groups Comparisons FWER
2 1 0.010
3 3 0.030
4 6 0.059
5 10 0.096
6 15 0.140
7 21 0.190
8 28 0.245
9 36 0.304
10 45 0.364

There are a few of common methods for controlling FWER

Notation.
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• 𝛼𝐹 represents the desired FWER for the family of tests.
• 𝛼𝐶 is the type I error rate for each individual test/comparison.
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13.2 The Bonferroni method

Consider 𝑘 hypothesis tests with 𝛼𝐹 = 0.01
𝐻0𝑖 vs. 𝐻1𝑖, 𝑖 = 1, … , 𝑘.
Let 𝑝1, … , 𝑝𝑘 be the 𝑝-values for these tests.

Suppose we reject 𝐻0 when 𝑝𝑖 ≤ 𝛼𝐶

𝐹𝑊𝐸𝑅 = 𝛼𝐹 ≤ 𝑘 ⋅ 𝛼𝐶

𝛼𝐶 = 𝛼𝐹
𝑘

This is based off what is known as the Boole’s theorem/inequality.

• Bonferroni was the person that connected the Boole’s inequality to Hypothesis testing.

• For the more probability theory inclined people, you can see a proof at https://en.
wikipedia.org/wiki/Bonferroni_correction

The Bonferroni rule for multiple comparisons is:

• Reject null hypothesis 𝐻0𝑖 when 𝑝𝑖 < 𝛼𝐹 /𝑘.
• Alternatively, you could get Bonferroni corrected p-values: 𝑝∗

𝑖 = 𝑝𝑖 ⋅ 𝑘.
– Reject 𝐻0 when 𝑝∗

𝑖 ≤ 𝛼𝐹 .
– Use 𝑝∗

𝑖 if you are using the strength of evidence approach.
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13.2.1 Example 1, OASIS data

oasis <- read_csv(here::here('datasets',
'oasis.csv'))

In our OASIS data, we have three groups:

• Group: whether subject is demented, nondemented, or converted.

We are trying to see if nWBV differs among the groups.

• nWBV: Normalized Whole Brain Volume; Brain volume is normalized by intercranial
volume to put subjects of different sizes and gender on the same scale. To my best
knowledge…

If we wanted to do all pairwise comparisons between the groups, we can do that via the
pairwise.t.test() function.

• The form is pairwise.t.test(x, g, p.adjust.method)
• x is the response vector.
• g is the group vector.
• p.adjust.method is the method used to adjust p-values

– There are many, but the two we will discuss are “none” and “bonferroni”

• Say we had loaded a data set called data, then we would idenfity the vector within the
dataframe using data$Variable

– pairwise.t.test(data$responseVar, data$groupVar, "none") would do all
pairwise t-tests with no correction.

– pairwise.t.test(data$responseVar, data$groupVar, "bonferroni")

There are 3 groups so there 𝑘 = 3(3−1)
2 = 3 comparisons.

Here are the unadjusted and adjusted p-values.

pairwise.t.test(oasis$nWBV, oasis$Group,
p.adjust.method = "none")

Pairwise comparisons using t tests with pooled SD

data: oasis$nWBV and oasis$Group
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Converted Demented
Demented 0.19624 -
Nondemented 0.42698 0.00046

P value adjustment method: none

pairwise.t.test(oasis$nWBV, oasis$Group,
p.adjust.method = "bonferroni")

Pairwise comparisons using t tests with pooled SD

data: oasis$nWBV and oasis$Group

Converted Demented
Demented 0.5887 -
Nondemented 1.0000 0.0014

P value adjustment method: bonferroni

Notice the adjusted p-value is capped at 1.

13.2.2 Example, Genomics

In Genomics, 100s if not 1000s of genes are compared in terms of “activation levels” (or
something like that…).

• Suppose we were comparing a 100 genes, then there would be 4950 comparisons.

– We would multiple each unadjusted p-value by 4950 which means and individual
comparison would have to have an unadjusted p-value less than 0.00010 to be re-
jected with 𝛼𝐹 = 0.05 using the Bonferroni method.

– We would probably miss many results where there is a difference in mean activation
levels.

• The Bonferroni method is overly conservative, i.e., is fails to reject the null hypothesis
too often (it has low power).

• In general, the Bonferroni method should not be applied unless you absolutely have to
(which I cannot think of a situation where you would except for your “boss” telling you
to).

• However, you are still expected to know it, so here it is.
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13.3 Tukey’s HSD (Tukey’s Honestly Significant Difference)

𝑀𝑆𝐸 = 𝑆𝑆𝐸
𝑁 − 𝑘

𝑄 =
|max𝑖(𝑦𝑖) − min𝑖(𝑦𝑗)|

√2⋅𝑀𝑆𝐸
𝑛

Under the null hypothesis of ANOVA (all means equal) then 𝑄 is a random variable of the
“Studentized Range Distribution”, 𝑞(𝑡, 𝑁 − 𝑡).
The Tukey method does not have to be used in ANOVA, but that is the main setting where
it applies.

13.3.1 Tukey in R

Now a pain with R is all of these different types of analysis methods, e.g., lm, aov, etc., may
have different subsidiary functions to into further analysis.

By default, TukeyHDS() is a very convenient function for doing Tukey comparisons. However,
it only works on aov objects.

fit.lm <- lm(nWBV ~ Group, oasis)
fit.aov <- aov(nWBV ~ Group, oasis)

# TukeyHSD(fit.lm) # THIS GIVES AN ERROR

TukeyHSD(fit.aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = nWBV ~ Group, data = oasis)

$Group
diff lwr upr p adj

Demented-Converted -0.013502877 -0.038129366 0.01112361 0.3984496
Nondemented-Converted 0.008202274 -0.016177415 0.03258196 0.7057132
Nondemented-Demented 0.021705151 0.007366034 0.03604427 0.0013286
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I personally think that’s stupid. lm and aov are two sides of the same analysis coin. All
relevant calculations are the same, just presented in different ways.

The modelbased or emmeans packages can help resolve these problems.

Anyway…

library(emmeans)
emmeans(fit.lm,

pairwise ~ Group,
adjust = "tukey")

$emmeans
Group emmean SE df lower.CL upper.CL
Converted 0.738 0.00942 147 0.719 0.756
Demented 0.724 0.00441 147 0.716 0.733
Nondemented 0.746 0.00415 147 0.738 0.754

Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
Converted - Demented 0.0135 0.01040 147 1.298 0.3984
Converted - Nondemented -0.0082 0.01030 147 -0.797 0.7057
Demented - Nondemented -0.0217 0.00606 147 -3.584 0.0013

P value adjustment: tukey method for comparing a family of 3 estimates
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13.4 FDR and the Benjamani-Hochberg procedure

There are four scenarios when it comes to the Reject/Fail to reject testing procedure.

Test Result
Alternmative is

true
Null hypothesis

true Total
Tests significant TP FP P
Test is declared
non-significant

FN TN N

Total 𝑚 − 𝑚0 𝑚0 𝑚

False Discovery Rate: The proportion of times that you reject the null hypothesis when it
is true, i.e., the proportion of Type I Errors.

𝐹𝐷𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇 𝑃 = 𝐹𝑃

𝑃

13.4.1 Controlling the FDR: Benjamani-Hochberg Procedure

1. Specify an acceptable maximum false discovery rate 𝑞 (or 𝛼)
2. Order the p-values from least to greatest: 𝑝(1), 𝑝(2), … , 𝑝(𝑚).
3. Find 𝑘, which is the largest value of 𝑖 such that 𝑝(𝑖) ≤ 𝑖

𝑚𝑞, i.e, 𝑘 = max{𝑖 ∶ 𝑝(𝑖) ≤ 𝑖
𝑚𝑞}

4. Reject all null hypotheses corresponding to the p-values 𝑝(1), … , 𝑝(𝑘). That is, reject the
𝑘-th smallest p-values.

pairwise.t.test(oasis$nWBV, oasis$Group, p.adjust.method = "BH")

Pairwise comparisons using t tests with pooled SD

data: oasis$nWBV and oasis$Group

Converted Demented
Demented 0.2944 -
Nondemented 0.4270 0.0014

P value adjustment method: BH
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13.4.2 Other Procedures for Controlling FDR

There are a couple methods for controlling FDR in pairwise.t.test():

• Benjamani-Hochberg: p.adjust.method = "BH" (you may also put "fdr" instead of
"BH")

• Benjamani-Yekutieli: p.adjust.method = "BY"
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14 ANOVA Assumptions

Here are some code chunks that setup this chapter.

# Here are the libraries I used
library(tidyverse) # standard
library(knitr)
library(readr)
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car) # need for some regression stuff like vif
library(GGally)
library(mosaic) # For nicer TukeyHSD function that works with lm()

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())
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14.1 Notation Reminder

• 𝑦𝑖𝑗 is the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ treatment group.

– 𝑖 = 1, … , 𝑡, where 𝑡 is the total number of treatment groups.
– 𝑗 = 1, … , 𝑛𝑖 where 𝑛𝑖 is the number of observations in treatment group 𝑖.

• 𝑦𝑖. = ∑𝑛𝑖
𝑗=1

𝑦𝑖𝑗
𝑛𝑖

is the mean of treatment group 𝑖.

• ̄𝑦.. = ∑𝑡
𝑖=1 ∑𝑛𝑖

𝑗=1
𝑦𝑖𝑗
𝑁 is the over all mean of all observations.

– 𝑁 is the total number of observations.

14.2 Assumptions

In ANOVA, we have the same assumptions. They have to do with the residuals!

Before the residuals in linear regression were:

𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖

Well now, an observations is 𝑦𝑖𝑗 and the any observation would best be predicted by its group
mean 𝑦𝑖

𝑒𝑖 = 𝑦𝑖𝑗 − 𝑦𝑖.

• We assume the residuals are still normally distributed.
• The variability is constant between groups.

– Denote the standard deviation of population group 𝑖 with 𝜎𝑖.
– We assume 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑡.

• We assume they are independent. This is an issue in the situation where measurements
are recorded over time.

• In linear regression, we additionally had to worry about model bias.

– This is not an issue in ANOVA.
– This is because we are estimating group means using sample means. Sample means

are unbiased estimators by their very nature.
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14.3 Checking them is about the same! autoplot()

oasis <- read_csv(here::here("datasets",
'oasis.csv'))

fit.lm <- aov(nWBV ~ Group, oasis)

autoplot(fit.lm)
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oasis %>%
group_by(Group) %>%
summarise(SD = sd(nWBV),

Mean = mean(nWBV),
n = length(nWBV))

# A tibble: 3 x 4
Group SD Mean n
<chr> <dbl> <dbl> <int>

1 Converted 0.0330 0.738 14
2 Demented 0.0315 0.724 64
3 Nondemented 0.0387 0.746 72
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The variability looks a bit smaller in the middle group, i.e., the Converted group. HOWEVER,
that is only because there are so few observations in that group.

The normality looks pretty good.
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14.3.1 Testing for Constant Variability/Homoskedasticity: Levene’s Test and
Brown-Forsythe Test

To test for for constant variability in ANOVA, we use ANOVA.

The hypotheses are

𝐻0 ∶ 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑡 𝐻1 ∶ At least one difference exists.

Instead of using the observations 𝑦𝑖𝑗, we use

𝑧𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦𝑖.|

or

𝑧𝑖𝑗 = |𝑦𝑖𝑗 − ̃𝑦𝑖.|

where ̃𝑦𝑖. is the median of a group.

• We call it Levene’s Test when using the mean 𝑦𝑖. to compute 𝑧𝑖𝑗.
• We call it the Brown-Forsythe Test when using the median ̃𝑦𝑖 to compute 𝑧𝑖𝑗.

Then the ANOVA process is used to to see if the mean of the 𝑧 values differ between the
groups.

• 𝑆𝑆𝑇 ∗ = ∑𝑛
𝑖=1 𝑛𝑖 (𝑧𝑖. − 𝑧..)

2

• 𝑆𝑆𝐸∗ = ∑𝑛
𝑖=1 (𝑧𝑖𝑗 − 𝑧𝑖.)

2

𝑧𝑖. and 𝑧.. are the group means and overall mean of the 𝑧𝑖𝑗’s.

And then we have the mean squares. Just as before.

• 𝑀𝑆𝑇 ∗ = 𝑆𝑆𝑇 /(𝑡 − 1)
• 𝑀𝑆𝐸∗ = 𝑆𝑆𝐸/(𝑁 − 𝑡)

And our test statistic is

𝐹 ∗
𝑡 = 𝑀𝑆𝑇 ∗/𝑀𝑆𝐸∗

• Under the null hypothesis this test statistic followsan 𝐹(𝑡 − 1, 𝑁 − 𝑡) distribution which
is used to compute its p-value.

FYI: In many texts that I have seen, it is sometimes referred to as 𝑊 instead of 𝐹 ∗
𝑡 .
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14.3.2 Levene/Brown-Forsythe in R

You need the car library and the function for performing either the Levene or Brown-Forsythe
in R is leveneTest()

You only need one argument, your lm() or aov() depending on how you do the ANOVA:

• leveneTest(model)
• Despite its name, it is doing the Brown-Forsythe version of the test by default.
• To do the Levene Test, you have to specify a center argument.

– center = median is Brown-Forsythe by default.
– center = mean is Levene.
– So to perform Levene’s Test: leveneTest(model, center = mean)

14.3.3 Oasis Example

fit.aov <- aov(formula = nWBV ~Group,
data=oasis)

car::leveneTest(fit.aov)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 1.0268 0.3607
147

You may see some sort of warning message like:

Warning message:
In leveneTest.default(y = y, group = group, ...) : group coerced to factor.

Technically, the group variable should be a “factor” type of variable in R. This is just telling
your grouping variable isn’t a “factor” type of variable and the function is assuming that it
should be a “factor”.

leveneTest works on both the aov() and lm() model types.
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14.4 What if the assumptions are violated?

• Should normality be a major issue, then either transformations should be attempted or
you should look into something called the Kruskal-Wallis test. And probably consult a
statistician.

• If the variability is not constant across groups, then there is Welch version of the ANOVA
test.

To perform the Welch ANOVA, you would use the oneway.test().

You input just like with lm() or aov().

oneway.test(nWBV ~ Group, oasis)

One-way analysis of means (not assuming equal variances)

data: nWBV and Group
F = 6.4889, num df = 2.000, denom df = 37.508, p-value = 0.003801

Compare that to the standard ANOVA:

summary(fit.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.01601 0.008007 6.443 0.00208 **
Residuals 147 0.18268 0.001243
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is not much of a difference since the Brown-Forsythe test did not indicate there was
reason to conclude the variability isn’t constant.

14.4.1 Games-Howell Procedure

The Games-Howell procedure is used to do pairwise comparisons when normality is not an
issue but homogeneity is a concern.

• It is available via the rstatix package.
• Use the games_howell_text() function.
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The format is games_howell_test(data, formula, conf.level = 0.95, detailed =
FALSE).

• data: a data.frame containing the variables in the formula.

• formula: a formula of the form x ~ group where x is a numeric variable giving the data
values and group is a factor with one or multiple levels giving the corresponding groups.
For example, formula = TP53 ~ cancer_group.

• conf.level: confidence level of the interval.

• detailed: logical value. Default is FALSE. If TRUE, a detailed result is shown.

This package intends to change the paradigm of functions such that they are formatted so
that the data argument is first. This is meant for compatibility with newer data-sciency uses
of R that involve things called “pipes”
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14.5 Some Extra Remarks

From this ResearchGate question.

Bruce Weaver writes what I consider to be some rather nice advice.

The numbered parts are verbatim from that link:

1. Levene’s test is a test of homogeneity of variance, not normality.

2. Testing for normality as a precursor to a t-test or ANOVA is not very helpful, IMO.
Normality (within groups) is most important when sample sizes are small, but that is
when tests of normality have very little power to detect non-normality. As the sample
sizes increase, the sampling distribution of the mean converges on the normal distribu-
tion, and normality of the raw scores (within groups) becomes less and less important.
But at the same time, the test of normality has more and more power, and so will detect
unimportant departures from normality.

3. Rather than testing for normality, I would ask if it is fair and reasonable to use means
and SDs for description. If it is, then ANOVA should be fairly valid.

4. Many authors likewise do not recommend testing for homogeneity of variance prior to
doing a t-test or ANOVA. Box said that doing a preliminary test of variances was like
putting out to sea in a row boat to see if conditions are calm enough for an ocean liner.
I.e., he was saying that ANOVA is very robust to heterogeneity of variance. That is
especially so when the sample sizes are equal (or nearly so). But as the sample sizes
become more discrepant, heterogeneity of variance becomes more problematic. When
sample sizes are reasonably similar, some authors suggest that ANOVA is robust to
heterogeneity of variance so long as the ratio of largest variance to smallest variance is
no more than 5:1.

However, let me add a note:

• It may not necessarily be useful to test for homogeneity of variability (and other assump-
tions), but it is good to inspect plots of the assumptions. If there is a huge discrepancy,
then you’re going to want to address them.

14.5.1 One Final Note: Sample Sizes

Hopefully you end up taking a class in “Experimental Design”.

• There will be an emphasis on experiments with “balanced” data, i.e., each group has
equal sample size.

• Often this will be impossible.
• Especially in experiments involving people.
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• I have tried to provide tools that are robust alternatives.

– A caveat is that if you have extremely unbalanced samples, e.g., 5 in one group and
50 in another group.

– You should be very careful and probably need to learn new methods or consult a
statistician.
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15 Balanced (Uniform Sample Size) Two-Way
ANOVA

Here are some code chunks that setup this chapter

# Here are the libraries I used
library(tidyverse) # standard
library(knitr)
library(readr)
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car) # need for some regression stuff like vif
library(GGally)
library(emmeans)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())

The idea of analysis of variance mainly stems from concepts of “experimental design” which is
a separate course that should be taken should you be in a field that heavily focuses on, well…
quantitative experiments that will be analyzed.

There is so much there that we can’t even touch on it in a meaningful way with the scope of
this course.

Anyway, in an experiment we manipulate external variables and see their affect on the response
variable.

• 𝑦 is our response variable
• We can have various 𝑥 variables that we are manipulating.

– In ANOVA context these are called factors.
– We can have more than one factor. (Technically as many as we want, but probably

stop at 3!)
– Each factor has a set of levels, i.e. the specific values that are set
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– A treatment is the specific combination of the levels of all the factors.
– Each individual treatment could be referred to as a cell.

• Group A: A_1_,A_2_,A_3_
• Group B: B_1_, B_2_
• Group Combinations: A_1_B_1_,A_2_B_1_,A_3_B_1_,A_1_B_2_,A_2_B_2_,A_3_B_2_

15.1 Pseudo-Example

We are doing an ANOVA type experiment.

• We have are subjects and we want to test the effectiveness of a drug and exercise regime
on blood pressure.

• The drug is factor A and there will be 3 dose levels: 0mg (control), 5mg, and 10mg
• The exercise regime is factor B with 3 levels: none (control), light, heavy.
• This would be referred to as a 3 by 3 (3 × 3) ANOVA.

– In general we say 𝐴 × 𝐵 where we put the number of levels for each factor.
– In this case there would be 9 total unique combinations of the two factors which

means there would be 9 treatments

We can view it as a grid kind of pattern for the design of the experiement.

Regime\Dose 0mg 5mg 10mg
none 0 & none (control) 5 & none 10 & none
light 0 & light 5 & light 10 & light
heavy 0 & heavy 5 & heavy 10 & heavy

And there would be a random assignment of each treatment to a set of subjects.

15.1.1 Sample Sizes in Two-Way ANOVA

• A basic analysis is possible if there is only one subject per treatment (cell).

– This is not an ideal scenario.

• More than 1 subject per treatment is better.
• An equal number of subjects for each treatment is “best”, which is called a balanced

design

– This may not feasible many times when involving living individuals (humans or
otherwise.
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– Subject smay drop out of studies for various reasons.
– Levels of factors may have different difficulties for obtaining/producing.
– Variability of subject availability depending on treatments.
– Etc.

• If there are not an equal number of individuals within each group, it is referred to as an
unbalanced design.

• This usually not a problem with a large enough sample size and when there isn’t het-
eroscedasticity (check your assumptions!)

We will cover Balanced Design.

Unbalanced Design requires much more care and you should consult someone with
experience.

Should time allow, we will cover it. But it really is just a mess to wrap your head around.

15.2 Notation and jargon

There’s a lot here. The notation logic is fairly procedural (to a degree that it becomes confus-
ing).

Factors and Treatments

We have factor A with levels 𝑖 = 1, 2, … , 𝑎 and factor B with levels 𝑗 = 1, 2, … , 𝑏.

• 𝐴𝑖 represents level 𝑖 of factor 𝐴.
• 𝐵𝑗 represents level 𝑗 of factor 𝐵.
• 𝐴𝑖𝐵𝑗 represents the treatment combination of level 𝑖 and level 𝑗 of factors A and B

respectively.
• This is sometimes referred to as “treatment ij”.

Observations and Sample Means

An individual observation is denoted by 𝑦𝑖𝑗𝑘. The subscripts indicate we are looking at obser-
vation 𝑘 from treatment 𝐴𝑖𝐵𝑗

• There are 𝑛 observations in each individual treatment treatment, 𝑘 = 1, 2, … , 𝑛.
• 𝑦𝑖𝑗. is the mean of the observations in treatment 𝐴𝑖𝐵𝑗. (𝑦𝑖𝑗. = 1

𝑛 ∑𝑛
𝑘=1 𝑦𝑖𝑗𝑘)

• 𝑦𝑖.. is the mean of the observations in treatment 𝐴𝑖 across all levels of factor B. (𝑦𝑖.. =
1

𝑏𝑛 ∑𝑏
𝑗=1 ∑𝑛

𝑘=1 𝑦𝑖𝑗𝑘)
• 𝑦.𝑗. is the mean of the observations in treatment 𝐵𝑗 across all levels of factor A. (𝑦.𝑗. =

1
𝑎𝑛 ∑𝑎

𝑖=1 ∑𝑛
𝑘=1 𝑦𝑖𝑗𝑘)

• 𝑦... is the mean of all observations. (𝑦... = 1
𝑎𝑏𝑛 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1 ∑𝑛

𝑘=1 𝑦𝑖𝑗𝑘)
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15.3 Two way ANOVA Model

There is a means model:

𝑦 = 𝜇𝑖𝑗 + 𝜖

• 𝜇𝑖𝑗 is the mean of treatment 𝐴𝑖𝐵𝑗.
• Epsilon is the error term and it is assumed 𝜖 ∼ 𝑁(0, 𝜎).

– The constant variability assumption is here.

Which in my opinion is not congruent with what we are trying to investigate in Two-Way
ANOVA.

• We are trying to understand the effect that both factors have on the the response variable.
• There may be an interaction between the factors.

– This is when the effect the levels of factor A is not consistent across all levels of
factor B, and vice versa.

– For example, the mean of the response variable may increase when going from
treatment 𝐴1𝐵1 to 𝐴2𝐵1, but the response variable mean decreases when we look
at 𝐴1𝐵2 to 𝐴2𝐵2.

With this all in mind, the effects model in two-way ANOVA is:

𝑦 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝜖

• 𝜇 would be the mean of the response variable without the effects of the factors.

– This can usually be thought of as the mean of a control group.

• 𝛼𝑖 can be thought of as the effect that level 𝑖 of factor A has on the mean of 𝑦.
• Likewise, 𝛽𝑗 is the effect that level 𝑗 of factor B has on the mean of 𝑦.
• 𝛾𝑖𝑗 is the interaction effect, which is the additional effect that the specific combination

𝐴𝑖 and 𝐵𝑗 has on the mean of 𝑦.

15.3.1 Estimating model parameters (Means model)

If we are considering a means model there are a few things we can consider:

• The overall mean of the data 𝜇.. which is estimated by 𝑦...
• The overall mean of 𝐴𝑖 (when averaged over factor B) 𝜇𝑖. which is estimated by 𝑦𝑖..
• The overall mean of 𝐵𝑗 (when averaged over factor B) 𝜇.𝑗 which is estimated by 𝑦.𝑗.
• The treatment mean of 𝐴𝑖𝐵𝑗 𝜇𝑖𝑗 which is estimated by 𝑦𝑖𝑗.
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15.3.2 Estimating model parameters (Effects model)

It might be more interesting to estimate how big the effect is of a given treatment or how large
an interaction is.

• I would argue that the only meaningfully done IF there is a control group in both factors.

Assume that 𝐴1 and 𝐵1 are the control levels.

• Then 𝛼1 and 𝛽1 should be (at least conceptually) 0.
• There would be no interaction terms for any treatment 𝐴1𝐵𝑗 or 𝐴𝑖𝐵𝑗
• ̂𝛼𝑖 = 𝑦𝑖.. − 𝑦1..
• ̂𝛽𝑖 = 𝑦.𝑗. − 𝑦.1.
• ̂𝛾𝑖𝑗 = 𝑦𝑖𝑗. − 𝑦𝑖1. − 𝑦1𝑗. + 𝑦𝑖𝑗.

Estimating the interactions involves things we call contrasts and that is another can of
worms.

15.4 Hypothesis Tests

There are three sets of hypotheses that can potentially be tested in ANOVA.

15.4.1 Main Effects Tests

We can test whether factor A has an effect.

𝐻0 ∶ 𝛼𝑖 = 0 for all 𝑖, i.e., factor A has no effect on the mean of 𝑦.

• Note that this would be the hypothesis if there were a control group.
• Otherwise it would be more correct to say that all levels of factor A have an equivalent

effect (𝛼1 = 𝛼2 = ⋯ = 𝛼𝑎)

𝐻1 ∶ 𝛼𝑖 ≠ 0 for at least one 𝑖. At least one level of factor A has an effect on the mean of 𝑦.

• Or without a control, at least one 𝛼𝑖 differs from the rest.

Likewise we can perform a separate test for whether factor 𝐵 has an effect:

𝐻0 ∶ 𝛽𝑗 = 0 for all 𝑗, i.e., factor B has no effect on the mean of 𝑦.

• Note that this would be the hypothesis if there were a control group.
• Otherwise it would be more correct to say that all levels of factor B have an equivalent

effect (𝛽1 = 𝛽2 = ⋯ = 𝛽𝑏)
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𝐻1 ∶ 𝛽𝑗 ≠ 0 for at least one 𝑗. At least one level of factor B has an effect on the mean of 𝑦.

• Or without a control, at least one 𝛽𝑖 differs from the rest.

15.4.2 Interaction Test

BEFORE Before you can rely on the tests for the main effects, you must first
consider testing for whether there is any meaningful interaction.

𝐻0: 𝛾𝑖𝑗 = 0 for all 𝐴𝑖𝐵𝑗 treatment combinations.

• The idea of changing the hypothesis for whether there is a control or not is a bit more
technical.

• You could say the effects are all equivalent but then there really isn’t an interaction.
• There are multiple valid hypotheses IMO. So stick with this one to avoid getting too

technical.

𝐻1 ∶ 𝛾𝑖𝑗 ≠ 0 for at least on 𝐴𝑖𝐵𝑗 treatment combination.

The reason that this test must be the first one to be considered is that if there is an interaction
effect, it becomes mathematically impossible to effectively conclude the strength of an effect
of an individual factor overall.

• Interaction implies the effect of one factor changes depending on another factor so state-
ments about individual factors are a moot point.

15.4.3 Sums of Squares, Mean Squares, and Test Statistics

We are going to ignore all the formula based stuff at this point, just consider the concepts.

• We measure how meaningful a factor or interaction is via sums of squares, just as before.
• 𝑆𝑆𝐴 measures how meaningful is factor A within the data.

– The degrees of freedom is 𝑎 − 1.
• 𝑆𝑆𝐵 measures how meaningful is factor B within the data.

– The degrees of freedom is 𝑏 − 1
• 𝑆𝑆𝐴𝐵 measures how meaningful is the interaction within the data.

– The degrees of freedom is (𝑎 − 1)(𝑏 − 1)
• 𝑆𝑆𝐸 is the measure of how much variability is left unexplained by the factors and

interaction.

– The degrees of freedom is 𝑎𝑏(𝑛 − 1)
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“Meaningful” translates to “the amount of variability in data the data that is explained by
including the variable in the model”.

Just as before, to get test statistics we need to compute mean squares.

• 𝑀𝑆𝐴 = 𝑆𝑆𝐴/(𝑎 − 1)
• 𝑀𝑆𝐵 = 𝑆𝑆𝐵/(𝑏 − 1)
• 𝑀𝑆𝐴𝐵 = 𝑆𝑆𝐴𝐵/(𝑎 − 1)(𝑏 − 1)
• 𝑀𝑆𝐸 = 𝑆𝑆𝐸/(𝑎𝑏(𝑛 − 1))

And then we get 𝐹 test statistics.

• 𝐹𝐴 = 𝑀𝑆𝐴/𝑀𝑆𝐸 tests whether factor A has an effect, 𝐻0 ∶ 𝛼𝑖 = 0 for all 𝑖.
• 𝐹𝐵 = 𝑀𝑆𝐵/𝑀𝑆𝐸 tests whether factor B has an effect, 𝐻0 ∶ 𝛽𝑗 = 0 for all 𝑗.
• 𝐹𝐴𝐵 = 𝑀𝑆𝐴𝐵/𝑀𝑆𝐸 tests whether there is an interaction effect, 𝐻0: 𝛾𝑖𝑗 = 0 for all 𝑖

and 𝑗.

15.4.4 And so there is a Two-Way ANOVA table (surprise)

Source SS df MS F p
Factor A 𝑆𝑆𝐴 𝑎 − 1 𝑀𝑆𝐴 = 𝑆𝑆𝐴/(𝑎 − 1) 𝐹𝐴 =

𝑀𝑆𝐴/𝑀𝑆𝐸
𝑝𝐴

Factor B 𝑆𝑆𝐵 𝑏 − 1 𝑀𝑆𝐵 = 𝑆𝑆𝐵/(𝑏 − 1) 𝐹𝐵 =
𝑀𝑆𝐵/𝑀𝑆𝐸

𝑝𝐵

Interaction:
A*B

𝑆𝑆𝐴𝐵 (𝑎 − 1)(𝑏 −
1)

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵/((𝑎 − 1)(𝑏 − 1))

𝐹𝐴𝐵 =
𝑀𝑆𝐴𝐵/𝑀𝑆𝐸

𝑝𝐴𝐵

Error 𝑆𝑆𝐸 𝑎𝑏(𝑛 − 1) 𝑀𝑆𝐸 =
𝑆𝑆𝐸/(𝑎𝑏(𝑛 − 1))

• Reject 𝐻0 if 𝑝 < 𝛼
• 𝑃𝐴 → 𝐻0 ∶ 𝛼𝑖 = 0
• 𝑃𝐴 → 𝐻0 ∶ 𝛽𝑗 = 0
• 𝑃𝐴𝐵 → 𝐻0 ∶ 𝛾𝑖 = 0

15.5 Study: Compulsive Checking and Mood

This data is taken from the textbook resources of: Discovering Statistics Using R by Andy
Field, Jeremy Miles, Zoë Field

which itself is using data from a journal article (one textbook author is a paper co-author):
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The perseveration of checking thoughts and mood–as–input hypothesis by Davey et al. (2003),
https://doi.org/10.1016/S0005-7916(03)00035-1.

The study investigated the relation between mood and when people will stop performing a
task under different stopping rules. They were trying to explore the connection with Obsessive
Compulsive Disorder.

• There were 60 participants (it was one of those college student studies).
• The mood of a participant was “induced” via music:

– 20 were assigned to have a “negative” mood induction.
– 20 were assigned to have a “positive” mood induction.
– 20 were assigned to have a “neutral” mood induction.

• Participants were then asked to “to write down all the things they would wish to check
for safety or security reasons in their home before they left for a 3-week holiday”.

• Within each mood group:

– 10 participants were told to continue the task only if they felt like continuing.
– 10 participants were told to continue the task until they’ve listed as many as they

can.

Data are available in compulsion.csv.

• items: how many items a participant listed.
• mood: which mood induction group the participant was in.

– Negative
– Positive
– Neutral

• stopRule: what was the stopping rule

– Many : “As many as you can”
– Feel : “Feel like continuing”

ocd <- read_csv(here::here("datasets",'ocd.csv'))

Here is what a sample of the data look like

# A tibble: 10 x 3
items mood stopRule
<dbl> <chr> <chr>

1 7 Negative Many
2 5 Neutral Feel
3 10 Neutral Many
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4 8 Positive Feel
5 15 Negative Feel
6 5 Negative Many
7 13 Negative Many
8 14 Neutral Feel
9 31 Positive Feel
10 14 Positive Feel

For videos related to the analysis of this data in R, I’ll go over some issues with the analyses
performed. We are basically following along with what was done in the paper.

15.5.1 Examining the data

Always take a look at your data first.

We’ll look at boxplots, you can group by mood and color by stopping rule.

ggplot(ocd, aes(y = items, x = mood, color = stopRule)) +
geom_boxplot()
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15.5.2 Performing two-way ANOVA

ANOVA is similar to before and we can add variables like in regression. There is a trick to
adding in an interaction.

You specify the interaction of two variables by “multiplying” them with the : symbol in the
formula, e.g., y ~ x + z + x:z

For two-way ANOVA, I highly recommend always using the Anova() function from the car
package, not the Anova() function. The reason will be clarified

ocd.fit <- lm(items ~ mood + stopRule + mood:stopRule,
data = ocd)

car::Anova(ocd.fit)

Anova Table (Type II tests)

Response: items
Sum Sq Df F value Pr(>F)

mood 34.13 2 0.6834 0.509222
stopRule 52.27 1 2.0928 0.153771
mood:stopRule 316.93 2 6.3452 0.003349 **
Residuals 1348.60 54
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Equivalently, you could “multiply” via the * symbol without listing the individual variables.

• The * tells R to include all individual AND interaction terms when used in a formula,
e.g., y ~ x*z

So equivalently we could do:

ocd.fit2 <- lm(items ~ mood*stopRule, data = ocd)
Anova(ocd.fit2)

Anova Table (Type II tests)

Response: items
Sum Sq Df F value Pr(>F)

mood 34.13 2 0.6834 0.509222
stopRule 52.27 1 2.0928 0.153771
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mood:stopRule 316.93 2 6.3452 0.003349 **
Residuals 1348.60 54
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And we get equivalent results.

15.6 Post-hoc Comparisons: Estimated Marginal Means

Depending how we want to view the data, the means we are interested in may change.

• If we want to (and can) investigate the main effects, we look at what are referred to as
the marginal means

– 𝑦𝑖.. is the marginal mean of level 𝑖 of factor A. (Averaged across all levels of B)
– 𝑦.𝑗. is the marginal mean of level 𝑗 of factor B. (Averaged across all levels of A)

• 𝑦𝑖𝑗.’s are known as the cell or treatment means. The mean of treatment 𝐴𝑖𝐵𝑗

15.6.1 Using the emmeans() function to get marginal or cell means

The emmeans() function within the eponymous emmeans package.

We will stick with the simplest way.

• The format is emmeans(model, specs, level = 0.95)
• model is the lm or other type of model you create.
• specs specifies what means you want and how you want to adjust them.

– The input is a formula style but without the response variable listed, i.e., ~ x and
not y ~ x (unless you know some more “fun” stuff).

– ~ A will compute the marginal means for each level of factor A. This should only
be used if an interaction term is not “significant”.

– ~ A | B will calculate the cell means for the levels of factor A conditioned upon
what the level of factor B is.

– ~ A | B is a way of organizing the interaction means in a Two-Way model
– You can switch which variable. B | A.
– When you specify at condition variable using | you are getting only the a portion

of the interaction means.
– ~ A*B will compute the cell/interaction means

• level specifies the confidence level of resulting confidence interval
• There is an adjust argument, it is tukey by default and lets just leave it like that.
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– adjust with change automatically depending on the situation.

emmeans(ocd.fit, ~ mood, level = 0.99)

mood emmean SE df lower.CL upper.CL
Negative 10.9 1.12 54 7.92 13.9
Neutral 9.3 1.12 54 6.32 12.3
Positive 10.9 1.12 54 7.92 13.9

Results are averaged over the levels of: stopRule
Confidence level used: 0.99

emmeans(ocd.fit, ~ mood | stopRule, level = 0.99)

stopRule = Feel:
mood emmean SE df lower.CL upper.CL
Negative 9.2 1.58 54 4.98 13.4
Neutral 9.9 1.58 54 5.68 14.1
Positive 14.8 1.58 54 10.58 19.0

stopRule = Many:
mood emmean SE df lower.CL upper.CL
Negative 12.6 1.58 54 8.38 16.8
Neutral 8.7 1.58 54 4.48 12.9
Positive 7.0 1.58 54 2.78 11.2

Confidence level used: 0.99

emmeans(ocd.fit, ~ mood:stopRule, level = 0.99)

mood stopRule emmean SE df lower.CL upper.CL
Negative Feel 9.2 1.58 54 4.98 13.4
Neutral Feel 9.9 1.58 54 5.68 14.1
Positive Feel 14.8 1.58 54 10.58 19.0
Negative Many 12.6 1.58 54 8.38 16.8
Neutral Many 8.7 1.58 54 4.48 12.9
Positive Many 7.0 1.58 54 2.78 11.2

Confidence level used: 0.99

Note that it warns you that an interaction is present and therefore you should not look at
single factor means. (How convenient.)
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15.6.2 Getting pairwise comparisons

To get pairwise comparisons, you save your emmeans() as a variable and pass it to the pairs()
function.

The format is ‘pairs(emmeansThing, adjust = “tukey”)

• adjust will adjust resulting confidence intervals or hypothesis tests based on any of the
methods discussed.

– “tukey” is an option, use this option when doing pairwise comparisons unless you
have unbalanced data

– “sidak” is another option.
– there are many more

moodMeans <- emmeans(ocd.fit, ~ mood, level = 0.99)
stopRuleBymoodMeans <- emmeans(ocd.fit, ~ stopRule | mood, level = 0.99)
interactionMeans <- emmeans(ocd.fit, ~ mood:stopRule, level = 0.99)

pairs(moodMeans, adjust = "tukey")

contrast estimate SE df t.ratio p.value
Negative - Neutral 1.6 1.58 54 1.012 0.5723
Negative - Positive 0.0 1.58 54 0.000 1.0000
Neutral - Positive -1.6 1.58 54 -1.012 0.5723

Results are averaged over the levels of: stopRule
P value adjustment: tukey method for comparing a family of 3 estimates

pairs(stopRuleBymoodMeans, adjust = "tukey")

mood = Negative:
contrast estimate SE df t.ratio p.value
Feel - Many -3.4 2.23 54 -1.521 0.1340

mood = Neutral:
contrast estimate SE df t.ratio p.value
Feel - Many 1.2 2.23 54 0.537 0.5935

mood = Positive:
contrast estimate SE df t.ratio p.value
Feel - Many 7.8 2.23 54 3.490 0.0010
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pairs(interactionMeans, adjsut = "tukey")

contrast estimate SE df t.ratio p.value
Negative Feel - Neutral Feel -0.7 2.23 54 -0.313 0.9996
Negative Feel - Positive Feel -5.6 2.23 54 -2.506 0.1406
Negative Feel - Negative Many -3.4 2.23 54 -1.521 0.6523
Negative Feel - Neutral Many 0.5 2.23 54 0.224 0.9999
Negative Feel - Positive Many 2.2 2.23 54 0.984 0.9210
Neutral Feel - Positive Feel -4.9 2.23 54 -2.192 0.2582
Neutral Feel - Negative Many -2.7 2.23 54 -1.208 0.8310
Neutral Feel - Neutral Many 1.2 2.23 54 0.537 0.9944
Neutral Feel - Positive Many 2.9 2.23 54 1.298 0.7850
Positive Feel - Negative Many 2.2 2.23 54 0.984 0.9210
Positive Feel - Neutral Many 6.1 2.23 54 2.729 0.0859
Positive Feel - Positive Many 7.8 2.23 54 3.490 0.0118
Negative Many - Neutral Many 3.9 2.23 54 1.745 0.5090
Negative Many - Positive Many 5.6 2.23 54 2.506 0.1406
Neutral Many - Positive Many 1.7 2.23 54 0.761 0.9729

P value adjustment: tukey method for comparing a family of 6 estimates

Note the p-values are adjusted depending on how many groups are being compared:

mood = Positive:
contrast estimate SE df t.ratio p.value
As many as you can - Feel like continuing -7.8 2.23 54 -3.490 0.0010

Differs from:

contrast estimate SE df t.ratio p.value p.value
Positive Feel - Positive Many 7.8 2.23 54 3.490 0.0118

15.7 Diagnostics

Residual diagnostics are just like before. Use the autoplot() function to gauge how the
assumptions are holding.
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autoplot(ocd.fit)
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And if you feel as if you need it, use the leveneTest() function in the car package to get the
Brown-Forsythe test (because levene’s apparently isn’t the default!)

This must be done at the cell means level, and leveneTest doesn’t play nice with Two-Way
ANOVA models. You have to specify a formula with JUST the interaction term.

leveneTest(items ~ mood:stopRule, ocd)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 5 1.7291 0.1436
54
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16 Unbalanced Two-Factor Analysis of
Variance

Here are some code chunks that setup this chapter.

# Here are the libraries I used
library(tidyverse) # standard
library(knitr)

library(readr) # need to read in data
library(ggpubr) # allows for stat_cor in ggplots
library(ggfortify) # Needed for autoplot to work on lm()
library(gridExtra) # allows me to organize the graphs in a grid
library(car) # need for some regression stuff like vif
library(GGally)
library(emmeans)

# This changes the default theme of ggplot
old.theme <- theme_get()
theme_set(theme_bw())

An Unbalanced ANOVA involves data where individual treatments/cells do not have the
same number of observations/subjects.

The principals remain the same:

• 𝑦 is our response variable
• We can have various 𝑥 variables that we are manipulating.

– In ANOVA context these are called factors.
– We can have more than one factor. (Technically as many as we want, but probably

stop at 3!)
– Each factor has a set of levels, i.e. the specific values that are set
– A treatment is the specific combination of the levels of all the factors.

• We wish to assess which factors are important in our response variable.
• The main diffference with unbalanced data is that the hypothesis tests become a little

more obtuse.
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16.1 Two way ANOVA Model

This is still the same! It’s just copy pasted from previous section.

There is a means model:

𝑦 = 𝜇𝑖𝑗 + 𝜖

• 𝜇𝑖𝑗 is the mean of treatment 𝐴𝑖𝐵𝑗.
• Epsilon is the error term and it is assumed 𝜖 ∼ 𝑁(0, 𝜎).

– The constant variability assumption is here.

Which in my opinion is not congruent with what we are trying to investigate in Two-Way
ANOVA.

• We are trying to understand the effect that both factors have on the the response variable.
• There may be an interaction between the factors.

– This is when the effect the levels of factor A is not consistent across all levels of
factor B, and vice versa.

– For example, the mean of the response variable may increase when going from
treatment 𝐴1𝐵1 to 𝐴2𝐵1, but the response variable mean decreases when we look
at 𝐴1𝐵2 to 𝐴2𝐵2.

With this all in mind, the effects model in two-way ANOVA is:

𝑦 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝜖

• 𝜇 would be the mean of the response variable without the effects of the factors.

– This can usually be thought of as the mean of a control group.

• 𝛼𝑖 can be thought of as the effect that level 𝑖 of factor A has on the mean of 𝑦.
• Likewise, 𝛽𝑗 is the effect that level 𝑗 of factor B has on the mean of 𝑦.
• 𝛾𝑖𝑗 is the interaction effect, which is the additional effect that the specific combination

𝐴𝑖 and 𝐵𝑗 has on the mean of 𝑦.
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16.2 Notation and jargon

There’s a lot here. The notation logic is fairly procedural (to a degree that it becomes confus-
ing).

Factors and Treatments

We have factor A with levels 𝑖 = 1, 2, … , 𝑎 and factor B with levels 𝑗 = 1, 2, … , 𝑏.

• 𝐴𝑖 represents level 𝑖 of factor 𝐴.
• 𝐵𝑗 represents level 𝑗 of factor 𝐵.
• 𝐴𝑖𝐵𝑗 represents the treatment combination of level 𝑖 and level 𝑗 of factors A and B

respectively.
• This is sometimes referred to as “treatment ij”.

Sample Sizes

This is where things get sketchier/more obsuse. We have to account for the fact that each
𝐴𝑖𝐵𝑗 treatment group may have a different sample size.

• 𝑛𝑖𝑗 is the number of observations/subjects in treatment 𝐴𝑖𝐵𝑗.
• 𝑛𝑖. represents the total number of observations in 𝐴𝑖. (𝑛𝑖. = ∑𝑏

𝑗=1 𝑛𝑖𝑗)
• 𝑛.𝑗 represents the total number of observations in level 𝑖 of factor A. (𝑛.𝑗 = ∑𝑎

𝑖=1 𝑛𝑖𝑗)
• 𝑛.. (or sometimes 𝑁) represents the total number of observations overall. (𝑛.. =

∑𝑎
𝑖=1 ∑𝑏

𝑗=1 𝑛𝑖𝑗)

Observations and Sample Means

An individual observation is denoted by 𝑦𝑖𝑗𝑘. The subscripts indicate we are looking at obser-
vation 𝑘 from treatment 𝐴𝑖𝐵𝑗

• Since there are 𝑛𝑖𝑗 observations in each individual treatment treatment, 𝑘 = 1, 2, … , 𝑛𝑖𝑗.
• 𝑦𝑖𝑗. is the mean of the observations in treatment 𝐴𝑖𝐵𝑗. (𝑦𝑖𝑗. = 1

𝑛𝑖𝑗
∑𝑛𝑖𝑗

𝑘=1 𝑦𝑖𝑗𝑘)
• 𝑦𝑖.. is the mean of the observations in treatment 𝐴𝑖 across all levels of factor B. (𝑦𝑖.. =

1
𝑛𝑖.

∑𝑏
𝑗=1 ∑𝑛𝑖𝑗

𝑘=1 𝑦𝑖𝑗𝑘)
• 𝑦.𝑗. is the mean of the observations in treatment 𝐵𝑗 across all levels of factor A. (𝑦.𝑗. =

1
𝑛.𝑗

∑𝑎
𝑖=1 ∑𝑛𝑖𝑗

𝑘=1 𝑦𝑖𝑗𝑘)

• 𝑦... is the mean of all observations. (𝑦... = 1
𝑛..

∑𝑎
𝑖=1 ∑𝑏

𝑗=1 ∑𝑛𝑖𝑗
𝑘=1 𝑦𝑖𝑗𝑘)
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16.3 Sums of Squares in Unbalanced Designs

This is where things get tricky in unbalanced designs. We are forgoing formulas at this point
because they become somewhat less meaningful.

• In order for you to safely perform these hypothesis tests, you have to consider how you
are testing them.

• If we were to follow the pattern of say multiple regression or one-way ANOVA, we could
separate the variability explained by each factor.

𝑆𝑆𝐴 = Variability Explained by Factor A

• SSA would what is used to test 𝐻0 ∶ 𝛼𝑖 = 0 for all 𝑖.

𝑆𝑆𝐵 = Variability Explained by Factor B

• SSB would what is used to test 𝐻0 ∶ 𝛽𝑗 = 0 for all 𝑗.

𝑆𝑆𝐴𝐵 = Variability Explained by interaction between A and B

• SSAB would what is used to test 𝐻0 ∶ 𝛾𝑖𝑗 = 0 for all 𝑖, 𝑗.

However… In unbalanced designs, we no longer have access to these simplified sums of squares
and hypothesis tests

There become 3 different mainstream types of ANOVA Hypothesis Tests
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16.4 The Forsest of Sums of Squares

There are many ways of framing the sums of squares in unbalanced ANOVA as care must be
taken.

The notation here is changing to emphasize that we are looking at fundamentally different
things now.

• 𝑆𝑆(𝐴) is the amount of variability explained by factor A in a model by itself,

• 𝑆𝑆(𝐵) is the amount of variability explained for by factor B in a model by itself.

• 𝑆𝑆(𝐴𝐵) is the amount of variability explained for by interaction in a model by itself.

• 𝑆𝑆(𝐴|𝐵) is the additional variability explained for by factor A when factor B is in the
model

– 𝑆𝑆(𝐴|𝐵, 𝐴𝐵) is the additional variability explained for by factor A when factor B
and the interaction are in the model.

• 𝑆𝑆(𝐵|𝐴) is the additional variability explained for by factor B when factor A is in the
model.

– 𝑆𝑆(𝐵|𝐴, 𝐴𝐵) is the additional variability explained for by factor A when factor B
and the interaction are in the model.

• 𝑆𝑆(𝐴𝐵|𝐴, 𝐵) is the additional variability explained for by the interaction when factor
B and A are in the model.

The sum of squares are now about how much more a factor or interaction can contribute to a
model. Not whether it is in the model or not.
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16.5 Hypothesis Tests

There are three types of tests that use these sums of squares.

• Type I: “Sequential”.
• TYpe II: “Marginality” (This is a hill some people choose to die on it seems.)
• Type III: “???”

16.5.1 Type I Tests

Type I tests are about sequentially adding terms, starting with the factors then moving up to
higher order terms (interaction).

The sequence of hypothesis tests would be the following.

1. Start with one factor, the test would be:

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖
• This would be performed using 𝑆𝑆(𝐴)

2. Add in the next factor, the test would be:

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗
• This would be performed using 𝑆𝑆(𝐵|𝐴)

3. Add in the interaction.

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗
• This would be performed using 𝑆𝑆(𝐴𝐵|𝐴, 𝐵)
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16.5.2 Type II Tests

Type II Tests run on the principal of “marginality”.

• The idea is to move from lower order models, to higher order models with interactions.
• This becomes more important with three or more factors.

1. Compare how well factor A improves a model with factor B in it.

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛽𝑗
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗
• This would be performed using 𝑆𝑆(𝐴)

2. Compare how well factor B improves a model with factor A in it.

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗
• This would be performed using 𝑆𝑆(𝐵|𝐴)

3. Finally, see how well adding in the interaction works when both main effects are in the
model:

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗
• This would be performed using 𝑆𝑆(𝐴𝐵|𝐴, 𝐵)

317



16.5.3 Type III Tests

Type III tests are a kind of catch all test the compares a full model (all terms including
interaction) to a model missing a single term.

1. Compare how well factor A improves a model with factor B and the interaction in it.

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛽𝑗 + 𝛾𝑖𝑗
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗
• This would be performed using 𝑆𝑆(𝐴|𝐵, 𝐴𝐵)

2. Compare how well factor B improves a model with factor A and the interaction in it.

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛾𝑖𝑗
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗
• This would be performed using 𝑆𝑆(𝐵|𝐴, 𝐴𝐵)

3. Finally, see how well adding in the interaction works when both main effects are in the
model:

• 𝐻0 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗
• 𝐻1 ∶ 𝜇𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗
• This would be performed using 𝑆𝑆(𝐴𝐵|𝐴, 𝐵)
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16.5.4 Which tests to use?

In simple terms, it is situationally dependent which hypothesis test you use.

In more practical terms, pretty much Type II and Type III only

• Type I should only be done if you have pre-determined the list of importance of variables,
for some reason or another.

• Type II involves a more elegant approach that only becomes important in a three-way
ANOVA (3 factors)

– The general idea is that if a factor is “insignificant” then higher order terms (inter-
actions) would/should not be in the model.

– Type II sums of squares are most powerful for detecting main effects when interac-
tions are not present.

• Type III is just brute force your way through the hypothesis tests.
• I see Type II recommended more often than Type III. Go ahead and use it by default,

I’d say.
• But if you do not really know what is going on Type III is “safe”, in my opinion.

– Others would argue otherwise simply by fact that another option exists and the
whole “my opinion is better” mindset.

– I personally don’t see a problem with Type III but it’s situation dependent.
– If there are interactions, then it doesn’t even matter because you can’t ignore lower

order terms anyway.
– This guy has a VERY strong opinion on not using Type III: Page 12 of https:

//www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf.

16.5.5 PAY ATTENTION TO WHAT THE SOFTWARE DOES

• In unmodified/base R, an ANOVA analysis will use Type I Tests which is almost NEVER
recommended.

• The Anova() function in the car package uses Type II by defaul, which is fine.
• If you want Type III sum of squares, you have to change an option in R, then use the

Anova() function.
• Other software use different Type tests by default. Read the manual.
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16.6 Patient Satisifcation Data

This data is taken from the text: Applied Regression Analysis and Other Multivariable Meth-
ods

ISBN: 9781285051086

by David G. Kleinbaum, Lawrence L. Kupper, Azhar Nizam, Eli S. Rosenberg 5th Edition |
Copyright 2014

It’s a good book, but it may dive a bit too much in to theory sometimes. I don’t feel like I am
shamelessly ripping from the book since they took the data from a study/dissertation:

Thompson, S.J. 1972. “The Doctor–Patient Relationship and Outcomes of Pregnancy.”
Ph.D. disser-tation, Department of Epidemiology, University of North Carolina, Chapel Hill,
N.C.

The study attempted to ascertain a patients satisfaction with level of medical care during
pregnancy, and its association with how worried the patient was and how affective patient-
doctor communication was rated.

Data are available in patSas.csv.

• Satisfaction is the patient’s self rated satisfaction with their medical care.

– The scale is 1 through 10.
– It is unknown whether lower is better.
– It could be a Very Satisfied to Very Dissatisfied from left to right which would mean

1 = Very Satisfied.

• Worry is how worried a patient was.

– Worry was grouped into the levels Negative and Postive.
– I cannot ascertain whether Negative means they had low worry or they a negative

feelings. The book source does not specify, and the dissertation is not open access.

• AffCom is the rating of how affective the patient-doctor communication was rated.

– The levels are High, Medium, to Low.
– It may seem more obvious what the meaning is here, but always be careful. PhD

students can be quirky and have their own unique concepts of perceived reality.
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16.6.1 Looking at the sample sizes for the cells

patSas <- read_csv(here::here(
"datasets",'patSas.csv'))

Here is what a sample of the data look like

# A tibble: 10 x 3
Satisfaction Worry AffCom

<dbl> <chr> <chr>
1 4 Positive High
2 2 Negative High
3 5 Positive Low
4 6 Positive High
5 6 Negative High
6 4 Negative High
7 4 Positive High
8 6 Positive High
9 9 Negative Low
10 7 Positive Medium

Lets look at how many patients fall into each factor level and treatment.

# Worriers breakdown
table(patSas$Worry)

Negative Positive
22 30

# Communication breakdown
table(patSas$AffCom)

High Low Medium
22 18 12
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# Two-way Table
table(patSas$Worry, patSas$AffCom)

High Low Medium
Negative 8 10 4
Positive 14 8 8

The setup is unbalanced.

• The main issue I have is the sample size in the Negative/Medium treatment cell is low
compared to the others.

• If the ratio between smaller and larger groups gets too large, ANOVA starts becoming
kind of pointless.

• a 4 to 14 is not terrible but definitely it is starting to get to the point where ANOVA
may not be very useful.
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16.6.2 Graphing the data! (DO IT!)

ggplot(patSas, aes(y = Satisfaction,
x = AffCom, color = Worry)) +

geom_boxplot()
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Looks like an interaction. The pattern is different in the negative group versus the positive
group.
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16.6.3 Type II ANOVA

First, lets use the default of the Anova() function in the car package.

This will do Type II Tests by default

# Make your model
pat.fit <- lm(Satisfaction ~ AffCom*Worry, patSas)

Anova(pat.fit)

Anova Table (Type II tests)

Response: Satisfaction
Sum Sq Df F value Pr(>F)

AffCom 51.829 2 8.3112 0.0008292 ***
Worry 3.425 1 1.0984 0.3000824
AffCom:Worry 26.682 2 4.2787 0.0197611 *
Residuals 143.429 46
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here we have somewhat strong evidence that there is an interaction.

• This wouldn’t fall under my default criteria for declaring “significance” if I were in the
NHST frame of reference.

• Interaction is fairly apparent from the graphs.
• I would err on the side of caution, and declare that there is one.

– We would have to ignore main effects, but if there is actually an interaction, main
effect analyses would be difficult to interpret.

– It might be prudent for higher 𝛼 values for interaction tests in general.
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16.6.4 Type III ANOVA

To do type III ANOVA in R, specifically within the Anova() function, you have to do a couple
things.

• There is a type argument so you would use Anova(model, type = "III") or type =
3.

• You need also need to specify a special option.
• Then you have to create a new model AFTER you use that option.
• This is usually the default method in most statistical software (other than car in R)

options(contrasts = c("contr.sum","contr.poly"))

pat.fit2 <- lm(Satisfaction ~ AffCom*Worry, patSas)

Anova(pat.fit2, type = 3)

Anova Table (Type III tests)

Response: Satisfaction
Sum Sq Df F value Pr(>F)

(Intercept) 1679.33 1 538.5911 < 2.2e-16 ***
AffCom 52.11 2 8.3566 0.000802 ***
Worry 8.30 1 2.6627 0.109554
AffCom:Worry 26.68 2 4.2787 0.019761 *
Residuals 143.43 46
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that intercept term there, ignore it. That’s just telling us there is an overall mean that
is not zero, which is a pointless piece of information given the scores start at 1.
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16.6.5 Multiple Comparisons

Everything is the same as previously when using emmeans() and pairs().

• If there is an interaction, then you must use emmeans(model, ~ A:B) or A*B.
• When using pairs it is safer to use the adjust = "holm" argument.

– Tukey procedures get more unreliable in the case of unbalanced data.
– This procedure conserves FWER under arbitrary conditions and is better than

Bonferroni.

16.6.6 Main Effect Comparisons

If we consider the evidence of interaction to be sufficient to conclude that there is in fact an
interaction, it is arguably useless to look at main effects.

• Furthermore, we would not look at the Worry main effect means and pairwise compar-
isons.

• This is just for demonstration.

worryMeans <- emmeans(pat.fit, ~ Worry)

worryMeans

Worry emmean SE df lower.CL upper.CL
Negative 5.67 0.406 46 4.85 6.48
Positive 6.52 0.334 46 5.85 7.20

Results are averaged over the levels of: AffCom
Confidence level used: 0.95

pairs(worryMeans)

contrast estimate SE df t.ratio p.value
Negative - Positive -0.857 0.525 46 -1.632 0.1096

Results are averaged over the levels of: AffCom

• There still was an interaction so this comparison may not be considered worthwhile.
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comMeans <- emmeans(pat.fit, ~ AffCom)

comMeans

AffCom emmean SE df lower.CL upper.CL
High 5.29 0.391 46 4.50 6.07
Low 7.50 0.419 46 6.66 8.34
Medium 5.50 0.541 46 4.41 6.59

Results are averaged over the levels of: Worry
Confidence level used: 0.95

pairs(comMeans, adjust = "holm")

contrast estimate SE df t.ratio p.value
High - Low -2.214 0.573 46 -3.863 0.0010
High - Medium -0.214 0.667 46 -0.321 0.7496
Low - Medium 2.000 0.684 46 2.924 0.0107

Results are averaged over the levels of: Worry
P value adjustment: holm method for 3 tests

This indicates that high and medium affective communication were associated with lower
patient satisfaction scores.
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16.6.7 One Way to Look at Interactions: AffCom by Worry Levels

We may only be interested in how affective communication affects satisfaction when looking
at the individual levels of worry.

• This is a comparison of cell/interaction means.
• However, we are subsetting the comparisons we care about.

comByWorryMeans <- emmeans(pat.fit, ~ AffCom | Worry)

comByWorryMeans

Worry = Negative:
AffCom emmean SE df lower.CL upper.CL
High 5.00 0.624 46 3.74 6.26
Low 8.00 0.558 46 6.88 9.12
Medium 4.00 0.883 46 2.22 5.78

Worry = Positive:
AffCom emmean SE df lower.CL upper.CL
High 5.57 0.472 46 4.62 6.52
Low 7.00 0.624 46 5.74 8.26
Medium 7.00 0.624 46 5.74 8.26

Confidence level used: 0.95

pairs(comByWorryMeans, adjust = "holm")

Worry = Negative:
contrast estimate SE df t.ratio p.value
High - Low -3.00 0.838 46 -3.582 0.0016
High - Medium 1.00 1.080 46 0.925 0.3599
Low - Medium 4.00 1.040 46 3.829 0.0012

Worry = Positive:
contrast estimate SE df t.ratio p.value
High - Low -1.43 0.783 46 -1.825 0.2233
High - Medium -1.43 0.783 46 -1.825 0.2233
Low - Medium 0.00 0.883 46 0.000 1.0000

P value adjustment: holm method for 3 tests
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• So it seems that the discrepancy arises when worry levels are categorized as “Negative”
• However, even though there is low significance, the same pattern arises in the Worry =

Positive group.
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16.6.8 Or Maybe: Worry by AffCom Levels

We may only be interested in how affective communication affects satisfaction when looking
at the individual levels of worry.

• This is a comparison of cell/interaction means.
• However, we are subsetting the comparisons we care about.

worryByComMeans <- emmeans(pat.fit, ~ Worry | AffCom)

worryByComMeans

AffCom = High:
Worry emmean SE df lower.CL upper.CL
Negative 5.00 0.624 46 3.74 6.26
Positive 5.57 0.472 46 4.62 6.52

AffCom = Low:
Worry emmean SE df lower.CL upper.CL
Negative 8.00 0.558 46 6.88 9.12
Positive 7.00 0.624 46 5.74 8.26

AffCom = Medium:
Worry emmean SE df lower.CL upper.CL
Negative 4.00 0.883 46 2.22 5.78
Positive 7.00 0.624 46 5.74 8.26

Confidence level used: 0.95

pairs(worryByComMeans, adjust = "holm")

AffCom = High:
contrast estimate SE df t.ratio p.value
Negative - Positive -0.571 0.783 46 -0.730 0.4690

AffCom = Low:
contrast estimate SE df t.ratio p.value
Negative - Positive 1.000 0.838 46 1.194 0.2386

AffCom = Medium:
contrast estimate SE df t.ratio p.value
Negative - Positive -3.000 1.080 46 -2.774 0.0080
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16.6.9 Another way: All Pairwise Comparison (Throw everything at the wall and
see what sticks)

cellMeans <- emmeans(pat.fit, ~ AffCom:Worry)

cellMeans

AffCom Worry emmean SE df lower.CL upper.CL
High Negative 5.00 0.624 46 3.74 6.26
Low Negative 8.00 0.558 46 6.88 9.12
Medium Negative 4.00 0.883 46 2.22 5.78
High Positive 5.57 0.472 46 4.62 6.52
Low Positive 7.00 0.624 46 5.74 8.26
Medium Positive 7.00 0.624 46 5.74 8.26

Confidence level used: 0.95

pairs(cellMeans, adjust = "holm")

contrast estimate SE df t.ratio p.value
High Negative - Low Negative -3.000 0.838 46 -3.582 0.0115
High Negative - Medium Negative 1.000 1.080 46 0.925 1.0000
High Negative - High Positive -0.571 0.783 46 -0.730 1.0000
High Negative - Low Positive -2.000 0.883 46 -2.265 0.2825
High Negative - Medium Positive -2.000 0.883 46 -2.265 0.2825
Low Negative - Medium Negative 4.000 1.040 46 3.829 0.0058
Low Negative - High Positive 2.429 0.731 46 3.322 0.0229
Low Negative - Low Positive 1.000 0.838 46 1.194 1.0000
Low Negative - Medium Positive 1.000 0.838 46 1.194 1.0000
Medium Negative - High Positive -1.571 1.000 46 -1.570 0.7400
Medium Negative - Low Positive -3.000 1.080 46 -2.774 0.0956
Medium Negative - Medium Positive -3.000 1.080 46 -2.774 0.0956
High Positive - Low Positive -1.429 0.783 46 -1.825 0.5955
High Positive - Medium Positive -1.429 0.783 46 -1.825 0.5955
Low Positive - Medium Positive 0.000 0.883 46 0.000 1.0000

P value adjustment: holm method for 15 tests

And then you have this mess to summarize. (Cell references are in AffCom:Worry format)
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• Low:Negative have higher mean scores than High:Negative, High:Positive, and
Medium:Negative. (p ≤ 0.0229)

• All other comparisons are inconclusive.

A generalization of this is that Low affective communication and Negative worry were associ-
ated with higher satisfaction scores.

• Hopefully this means that the scale goes from very satisfied to very disatisfied in terms
of 1 through 10 and affective communication leads to better satisfaction.

• Otherwise if a patient is categorized and “negative” on the worry skill, we should send
in a doctor that sucks at communicating, apparently.
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17 Generalized Linear Models

# Need the knitr package to set chunk options
library(knitr)
library(tidyverse)
library(gridExtra)
library(caret)
library(readr)

It should be noted that depending on the time frame that you may read about
“GLMs”, this may refer to two different types of modeling schemes

• GLM → General Linear Model: This is the older scheme that now refers to Linear Mixed
Models or LMMs. This has more with correlated error terms and “random effects” in
model.

• These days GLM refers to Generalized Linear Model. Developed by Nelder, John;
Wedderburn, Robert (1972). This takes the concept of a linear model and generalizes
it to response variables that do not have a normal distribution. This is what GLM
means today. (I haven’t run into an exception, but there might be ones out there
depending on the discipline.)

17.1 Components of Linear Model

We will start with the idea of the regression model we have been working.

𝜇𝑦|𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝.

• Here we are saying that the mean value of 𝑦, 𝜇𝑦|𝑥, is determined by the values of our
predictor variables.

• For making predictions, we have to add in a random component (because no model is
perfect).
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𝑦 = 𝜇𝑦|𝑥 + 𝜖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖.

We have two components here.

1. A deterministic component.

2. A random component: 𝜖 ∼ 𝑁(0, 𝜎2).

• The random component means that 𝑌 ∼ 𝑁(𝜇𝑦|𝑥, 𝜎2).
• The important part here is that the mean value of 𝑦 is assumed to be linearly related to

our 𝑥 variables.
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17.1.1 Introduction to Link Functions

We have tried transformations on data to try to see if we can fix heterogenity and non-
linearity issues.

• In Generalized Linear Models these are known as link functions.
• The functions are meant to link a linear model to the distribution of 𝑦 or link the

distribution of 𝑦 to a linear model. (which ever way you want to think about it)
• In the case of linear regression they are supposed to be the link of 𝑦 with Normality and

linearity.

Example:

𝑔(𝑦) = log(𝑦) = 𝜂𝑦|𝑥 + 𝜖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖

What does this mean for 𝑦 itself?

𝑌 = 𝑔−1 (𝜂𝑦|𝑥 + 𝜖) = 𝑒𝜂𝑦|𝑥+𝜖

𝜇𝑦|𝑥 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝+𝜖

• Another common option is 𝑔(𝑌 ) = 𝑌 𝑝 where it could be hoped that 𝑝 = 1 but more
often the best 𝑝 is not…
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17.1.2 Form of Generalized Linear Models

The form of Generalized Linear Models takes the basic form:

• Observations of 𝑦 are the result of some probability distribution whose mean (and po-
tentially variance) are determined or correlated with certain “predictor”/x variables.

• The mean value of 𝑦 is 𝜇𝑦|𝑥 and is not linearly related to 𝑥, but via the link function
it is, i.e.,

𝑔(𝜇𝑦|𝑥) =

There are now three components we consider:

1. A deterministic component.

2. The probability distribution of 𝑦 with some mean 𝜇𝑦|𝑥 and standard deviation (random-
ness) 𝜎𝑦|𝑥.

• In ordinary linear regression the probability distribution for 𝑦 was

𝑁(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝, 𝜎)

• Consider 𝑦 from a binomial distribution with probability of success 𝑝(𝑥), that is, the
probability depends on 𝑥. For an individual trial, we have:

– 𝜇𝑦|𝑥 = 𝑝(𝑥)
– 𝜎𝑦|𝑥 = √𝑝(𝑥)(1 − 𝑝(𝑥))
– This makes is so we can no longer just chuck the error term into the linear equation

for the mean to represent the randomness.

3. A link function 𝑔(𝑦) such that

𝑔 (𝜇𝑦|𝑥) = 𝜂𝑦|𝑥

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝

With GLMs, we are now paying attention to a few details.

• 𝑦 is not restricted to the normal distributions; that’s the entire point…

• The link function is chosen based on the distribution of 𝑦

– The distribution of 𝑦 determines the form of 𝜇𝑦|𝑥.
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17.1.3 Various Types of GLMs

Distribution
of 𝑌

Support of
𝑌

Typical
Uses

Link
Name Link Function: 𝑔(𝑦)

Normal (−∞, ∞) Linear
response
data

Identity 𝑔 (𝜇𝑦|𝑥) = 𝜇𝑦|𝑥

Exponentail (0, ∞) Exponential
Processes

Inverse 𝑔 (𝜇𝑦|𝑥) = 1
𝜇𝑦|𝑥

Poisson 0, 1, 2, … Counting Log 𝑔 (𝜇𝑦|𝑥) = log𝑦|𝑥
Binomial 0, 1 Classification Logit 𝑔 (𝜇𝑦|𝑥) = ln( 𝜇𝑦|𝑥

1−𝜇𝑦|𝑥
)

We will mainly explore Logistic Regression, which uses the Logit function.

This is one of the ways of dealing with Classification.
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17.2 Classification Problems, In General.

Classification can be simply define as determing what the outcome is for a discrete random
variable.

• An online banking service must be able to determine whether or not a transaction being
performed on the site is fraudulent, on the basis of the user’s past tranaction history,
balance, an other potential predictors. This a common use of statistical classification
known as Fraud detection

• On the basis of DNA sequence data for a number of patients with and without a given
disease a biologist would like to figure out which DNA mutations are disease-causing and
which are not.

• A person arrives at the emergency room with a set of symptoms that could possiblly be
attributed to one of three medical conditions: stroke, drug overdose, epileptic seizure.
We would want to choose or classify the person into one of the three categories.

In each of these situations what is the distribution of 𝑌 = the category an indidual falls into?
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17.2.1 Odds and log-odds

In classification models, the idea to to estimate the probability of an event occuring for an
individual: 𝑝.
There are a couple of ways that we assess how likely an event is:

• Odds are 𝑂𝑑𝑑𝑠(𝑝) = 𝑝
1−𝑝

– This is the ratio of an event occurring versus it not occurring.
– This gives a numerical estimate of how many times more likely it is for the event

to occur rather than not.
– 𝑂𝑑𝑑𝑠 = 1 implies a fifty/fifty split: 𝑝 = 0.5. (Like a coin flip!)
– 𝑂𝑑𝑑𝑠 = 𝑑 where 𝑑 > 1 implies that the event is 𝑑 times more likely to happen than

not.
– For 𝑑 < 0 the event is 1/𝑑 times more likely to NOT happen rather than happen.

• log-odds are taking the logarithm (typically the natural logarithm) of the odds:
log(𝑂𝑑𝑑𝑠(𝑝)) = 𝑙𝑜𝑔 ( 𝑝

1−𝑝)$
– In logistic regression, the linear relationship between 𝑝(𝑥) and the predictor vari-

ables is assumed to be via log(𝑂𝑑𝑑𝑠).
– 𝑙𝑜𝑔 ( 𝑝

1−𝑝) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘

339



17.3 An Example, Default

We will consider an example where we are interested in predicting whether an individual will
default on their credit card payment, on the basis of annual income, monthly credit card
balance and student status. (Did I pay my bills… Maybe I should check.)

Default <- read_csv(here::here("datasets","Default.csv"))

# Converting Balance and Income to Thousands of dollars

Default$balance <- Default$balance/1000
Default$income <- Default$income/1000

head(Default)

# A tibble: 6 x 5
...1 default student balance income
<dbl> <chr> <chr> <dbl> <dbl>

1 1 No No 0.730 44.4
2 2 No Yes 0.817 12.1
3 3 No No 1.07 31.8
4 4 No No 0.529 35.7
5 5 No No 0.786 38.5
6 6 No Yes 0.920 7.49

• student whether the person is a student or not.
• default is whether they defaulted
• balance is there total balance on their credit cards.
• income is the income of the individual.
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17.3.1 A little bit of EDA
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Try to describe what you see.
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17.3.2 Logistic Regression

For each individual 𝑦𝑖 we are trying to model if that individual is going to default or not.

• We will start by modeling 𝑃 (Default | Balance) ≡ 𝑃(𝑌 |𝑥).
• First, we we will code the default to a 1, 0 format to make modeling this probabil-

ity compatible with the standard form of the with a special case of the Binomial(𝑛, 𝑝)
distribution where 𝑛 = 1

𝑃(𝑌 = 1) = 𝑝(𝑥)

• Logistic regression creates a model for 𝑃(𝑌 = 1|𝑥) (technically the log-odds thereof)
which we will abbreviate as 𝑝(𝑥)

# Set an ifelse statement to handle the variable coding

#Create a new varible called def with the coded values
Default$def <- ifelse(Default$default == "Yes", 1,0)

Before we get into the actual Logistic Regression model, lets start with the idea that if we are
trying to predict 𝑝(𝑥), when should we should we say that someone is going to default?

• A possiblity may be we classify the person as potentially defaulting if 𝑝(𝑥) > 0.5
• Would it make sense to predict somone as a risk for defaulting at some other cutoff?
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17.3.3 Plotting

def.plot <- ggplot(Default, aes(x = balance, y = def, color = def)) + geom_point() +
xlab("Balance") + ylab("Default")

def.plot
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17.3.4 Why Not Linear Regression

We could use standard linear regression to model 𝑝(Balance) = 𝑝(𝑥). The line on this plot
represents the estimated probability of defaulting.

def.plot.lm <- ggplot(Default, aes(x = balance, y = def, color = def)) + geom_point()+
xlab("Balance") + ylab("Default") +
geom_smooth(method = 'lm')

def.plot.lm
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Can you think of any issues with this? Think about possible values of 𝑝(𝑥).
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17.3.5 Plotting the Logistic Regression Curve

Here is the curve for a logistic regression.

def.plot.logit <- ggplot(Default, aes(x = balance, y = def, color = def)) + geom_point() +
xlab("Balance") + ylab("Default") +
geom_smooth(method = "glm", method.args = list(family = "binomial"))

def.plot.logit
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How does this compare to the previous plot?
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17.4 The Logistic Model in GLM

Even though we are trying to model a 𝑝(𝑥), we are trying to model a mean.

What is the mean or Expected Values of a binomial random variable 𝑌 |𝑥 ∼ Binomial(1, 𝑝(𝑥))?
Before we get into the link function, lets look at the function that models 𝑝(𝑥)

𝑝(𝑥) = 𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥

The link functions for Logistic Regression is the logit function which is

logit(𝑥) = log( 𝑚
1 − 𝑚) where 0 < 𝑥 < 1

Which for 𝜇𝑦|𝑥 = 𝑝(𝑥) is

log( 𝑝(𝑥)
1 − 𝑝(𝑥)) = 𝛽0 + 𝛽1𝑥

• Notice that now we have a linear function of the coefficients.

• Something to pay attention to: When we are interpreting the coefficients, we are talking
about how the log odds change.

• The coefficients tell us what the percentage increase of the odds ratio would be.

Odds = 𝑝(𝑥)
1 − 𝑝(𝑥)
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17.4.1 Estimating The Coefficients: glm function

The function that is used for GLMs in R is the glm function.

glm(formula, family = gaussian, data)

• formula: the linear formula you are using when the link function is applied to 𝜇(𝑣𝑥).
This has same format as lm, e.g, y ~ x

• family: the distribution of 𝑌 which in logistic regression is binomial

• data: the dataframe… as has been the case before.

17.4.2 GLM Function on Default Data

default.fit <- glm(def ~ balance, family = binomial, data = Default)

summary(default.fit)

Call:
glm(formula = def ~ balance, family = binomial, data = Default)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.6513 0.3612 -29.49 <2e-16 ***
balance 5.4989 0.2204 24.95 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1596.5 on 9998 degrees of freedom
AIC: 1600.5

Number of Fisher Scoring iterations: 8
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17.4.3 Default Predictions

“Predictions” in GLM models get a bit trickier than previously.

• We can predict in terms of the linear response, 𝑔(𝜇(𝑥)), e.g., log odds in logistic regres-
sion.

• Or we can predict in terms of the actual response variable, e.g., 𝑝(𝑥) in logistic regression.

log( ̂𝑝(𝑥)
1 − ̂𝑝(𝑥)) = −10.6513 + 5.4090𝑥

Which may not be very useful in application.

log

So for someone with a credict balance of 1000 dollars, we would predict that their probability
of defaulting is

̂𝑝(𝑥) = 𝑒−10.6513+5.4090⋅1

1 + 𝑒−10.6513+5.4090⋅1 = 0.00526

And for someone with a credit balance of 2000 dollars, our prediction probability for defaulting
is

̂𝑝(𝑥) = 𝑒−10.6513+5.4090⋅2

1 + 𝑒−10.6513+5.4090⋅2 = 0.54158
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17.5 Interpreting coefficients

Because of what’s going on in logistic regression, we have forms for our model:

1. The linear form which is for predicting log-odds.
2. Odds ratios which is the exponentiated form of the model, i.e., 𝑒𝛽0+𝛽1𝑥.

• Then, we look at odds increasing (positive 𝛽1) or decreasing (negative 𝛽1) by 𝑒𝛽1 times.

3. Probabilities which are of the form 𝑒𝛽0+𝛽1𝑥

1+𝑒𝛽0+𝛽1𝑥 .

• Then 𝛽1 means… Nothing really intuitive.
• You just say 𝛽1 indicates increasing or decreasing probability respective of whether 𝛽1

is postive or negative.

Honestly, GLMs are where interpretations get left behind because the link functions screw
with our ability to make sense of the math.

17.6 Predict Function for GLMS

We can compute our predictions by hand but, that’s not super efficient. We can infact use the
predict function on glm objects just like we did with lm objects.

With GLMs, our predict function now takes the form:

predict(glm.model, newdata, type)

• glm.model is the glm object you created to model the data.
• newdata is the data frame with values of your predictor variables you want predictions

for. If no argument is given (or its incorrectly formatted) you will get the fitted values
for your training data.

• type chooses which form of prediction you want.

– type = "link" (the default option) gives the predictions for the link function, i.e,
the linear function of the GLM. So for logistic regression it will spit out the predicted
values of the log odds.

– type = "response" gives the prediction in terms of your response variable. For
Logistic Regression, this is the predicted probabilities.

– type = "terms" returns a matrix giving the fitted values of each term in the model
formula on the linear predictor scale. (idk)
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17.6.1 Using predict on Default Data

Let’s get predictions from the logistic regression model that’s been created.

predict(default.fit, newdata = data.frame(balance = c(1,2)), type = "link")

1 2
-5.1524137 0.3465032

predict(default.fit, newdata = data.frame(balance = c(1,2)), type = "response")

1 2
0.005752145 0.585769370
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17.6.2 Classifying Predictions

If we are looking at the log odds ratio, we will classify an observation as a 𝑌 = 1 if the log
odds is non-negative.

Default$pred.link <- predict(default.fit)
Default$pred.class1 <-as.factor(ifelse(Default$pred.link >=0, 1, 0))

Or we can classify based off the predicted probabilities, i.e., 𝑌 = 1 if ̂𝑝(𝑥) ≥ 0.5.

Default$pred.response <- predict(default.fit, type = "response")
Default$pred.class2 <-as.factor(ifelse(Default$pred.response >=0.5, 1, 0))

Which will produce identical classifications.

sum(Default$pred.class1 != Default$pred.class2)

[1] 0
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17.6.3 Assessing Model Accuracy

We can assess the accuracy of the model using a confusion matrix using the confusionMatrix
function, which is part of the caret package.

• Note that this will require you to install the e1071 package (which I can’t fathom why
they would do it this way…).

confusionMatrix(Predicted, Actual)

confusionMatrix(Default$pred.class1, as.factor(Default$def))

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 9625 233
1 42 100

Accuracy : 0.9725
95% CI : (0.9691, 0.9756)

No Information Rate : 0.9667
P-Value [Acc > NIR] : 0.0004973

Kappa : 0.4093

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity : 0.9957
Specificity : 0.3003

Pos Pred Value : 0.9764
Neg Pred Value : 0.7042

Prevalence : 0.9667
Detection Rate : 0.9625

Detection Prevalence : 0.9858
Balanced Accuracy : 0.6480

'Positive' Class : 0
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17.7 Categorical Predictors

Having categorical variables and including multiple predictors is pretty easy. It’s just like with
standard linear regression.

Let’s look at the model that just uses the student variable to predict the probability of
defaulting.

default.fit2 <- glm(def ~ student,
family = binomial,
data = Default)

summary(default.fit2)

Call:
glm(formula = def ~ student, family = binomial, data = Default)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.50413 0.07071 -49.55 < 2e-16 ***
studentYes 0.40489 0.11502 3.52 0.000431 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 2908.7 on 9998 degrees of freedom
AIC: 2912.7

Number of Fisher Scoring iterations: 6

predict(default.fit2,
newdata = data.frame(student = c("Yes",

"No")),
type = "response")

1 2
0.04313859 0.02919501

Would student status by itself be useful for classifying individuals as defaulting or no?
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17.8 Multiple Predictors

Similarly (Why isn’t there an ‘i’ in that?) to categorical predictors we can easily include
multiple predictor variables. Why? Because with the link function, we are just doing linear
regression.

𝑝𝑦|𝑥 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2⋯+𝛽𝑝𝑥𝑝

1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2⋯+𝛽𝑝𝑥𝑝

The link functions is still the same.

logit(𝑚) = log( 𝑚
1 − 𝑚) where 0 < 𝑥 < 1

Which for 𝜇𝑦|𝑥 = 𝑝𝑦|𝑥 is

log(
𝑝𝑦|𝑥

1 − 𝑝𝑦|𝑥
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 ⋯ + 𝛽𝑝𝑥𝑝
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17.8.1 Multiple Predictors in Default Data

Lets look at how the model does with using balance, income, and student as the predictor
variables.

default.fit3 <- glm(def ~ balance + income + student, family = binomial, data = Default)

summary(default.fit3)

Call:
glm(formula = def ~ balance + income + student, family = binomial,

data = Default)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.869045 0.492256 -22.080 < 2e-16 ***
balance 5.736505 0.231895 24.738 < 2e-16 ***
income 0.003033 0.008203 0.370 0.71152
studentYes -0.646776 0.236253 -2.738 0.00619 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom
AIC: 1579.5

Number of Fisher Scoring iterations: 8

predict(default.fit3,
newdata = data.frame(balance = c(1,2),

student = c("Yes",
"No"),

income=40),
type = "response")

1 2
0.003477432 0.673773774
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predict(default.fit3,
newdata = data.frame(balance = c(1),

student = c("Yes",
"No"),

income=c(10, 50)),
type = "response")

1 2
0.003175906 0.006821253
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18 Logistic Regression Diagnostics and Model
Selection

Things are a bit different in GLMs. There is no assumption of normality and the definition of
a residual is much more ambiguous.

• We verify the linearity assumption, i.e., 𝑔(𝜇𝑦|𝑥) is linearly related to the predictors.
(NOT 𝜇𝑦|𝑥).

– This one is a bit difficult to tease out.

• We check multicollinearty/VIF like before.
• Assess for influential observations.

18.1 Data: Do you have mesothelioma? If so call
< 𝐴𝑇 𝑇 𝑂𝑅𝑁𝐸𝑌 > at < 𝑃𝐻𝑂𝑁𝐸𝑁𝑈𝑀𝐵𝐸𝑅 > now.

18.1.1 Data description

From UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/
Mesothelioma%C3%A2%E2%82%AC%E2%84%A2s+disease+data+set+

This data was prepared by; >Abdullah Cetin Tanrikulu from Dicle University, Faculty of
Medicine, Department of Chest Diseases, 21100 Diyarbakir, Turkey e-mail:cetintanrikulu ‘@’
hotmail.com Orhan Er from Bozok University, Faculty of Engineering, Department of Electrical
and Electronics Eng., 66200 Yozgat, Turkey e-mail:orhan.er@bozok.edu.tr

In order to perform the research reported, the patient’s hospital reports from Dicle University,
Faculty of Medicine’s were used in this work. One of the special characteristics of this diagnosis
study is to use the real dataset taking from patient reports from this hospital. Three hundred
and twenty-four MM patient data were diagnosed and treated. These data were investigated
retrospectively and analysed files.

In the dataset, all samples have 34 features because it is more effective than other factors
subsets by doctor’s guidance. These features are; age, gender, city, asbestos exposure, type
of MM, duration of asbestos exposure, diagnosis method, keep side, cytology, duration of
symptoms, dyspnoea, ache on chest, weakness, habit of cigarette, performance status, White
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Blood cell count (WBC), hemoglobin (HGB), platelet count (PLT), sedimentation, blood lactic
dehydrogenise (LDH), Alkaline phosphatise (ALP), total protein, albumin, glucose, pleural
lactic dehydrogenise, pleural protein, pleural albumin, pleural glucose, dead or not, pleural
effusion, pleural thickness on tomography, pleural level of acidity (pH), C-reactive protein
(CRP), class of diagnosis. Diagnostic tests of each patient were recorded.
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18.2 Model Selection

There are a lot of variables in the data…AND I don’t have a code book for what some of the
stuff means.

What do I do?

cols(
age = col_double(),
gender = col_double(),
city = col_double(),
asbExposure = col_double(),
asbDuration = col_double(),
dxMethod = col_double(),
cytology = col_double(),
symDuration = col_double(),
dyspnoea = col_double(),
chestAche = col_double(),
weakness = col_double(),
smoke = col_double(),
perfStatus = col_double(),
WB = col_double(),
WBC = col_double(),
HGB = col_double(),
PLT = col_double(),
sedimentation = col_double(),
LDH = col_double(),
ALP = col_double(),
protein = col_double(),
albumin = col_double(),
glucose = col_double(),
PLD = col_double(),
PP = col_double(),
PA = col_double(),
PG = col_double(),
dead = col_double(),
PE = col_double(),
PTH = col_double(),
PLA = col_double(),
CRP = col_double(),
dx = col_double()

)
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18.2.1 Step one: Assess your goal and how you get there.

The goal will be to predict the probability of the subject having mesothelioma:

• dx is 1 for mesothelioma, 0 if “healthy”
• I want to do this for people that are ALIVE. And I want to do it based on the charac-

teristics of the person

– The dead variable is therefore useless to me, I can get rid of it.
– dxMethod doesn’t seem useful for my goal by its name either.
– I’m suspicious of cytology since it may be whether a specific type of test is used.

That would not be helpful in actually predicting if someone has mesothelioma based
on the attributes of that person.

• There are many categorical variables that I don’t know how they are coded.

– city, smoke, perfStatus
– If I can’t assess how they contribute to the model, I’m not going to use them.
– I don’t know how to measure those variables for future use of the model.
– Also, as a statistician, I can’t give meaningful results if I don’t have information

about a variable.

That still leaves of with 24 variables…
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18.2.2 Variance Inflaction Factors are still here

Let’s start with the full model.

Now get the VIFs (courtesy of ’car library)

age gender asbExposure asbDuration symDuration
1.623728 1.097621 2.719456 3.482200 1.141027
dyspnoea chestAche weakness WB WBC
1.094622 1.062902 1.220221 1.119346 1.124898

HGB PLT sedimentation LDH ALP
1.157734 1.886302 1.135334 1.870804 1.247170
protein albumin glucose PLD PP
1.336606 1.413671 1.102442 1.250738 7.939269

PA PG PE PTH PLA
7.117496 2.344206 2.351430 1.705495 1.878006

CRP
1.565218

• The criteria is about the same as before:

• If there are any VIFs greater than 5, investigate.

• If there are more than a few (no hard rule to give) in the 2 to 5 range or things seem
weird, investigate.

• What strikes me is absExposure and absDuration.

– These are whether someone has been exposed, and if so, how long were they exposed
in days.

– They are NOT independent of each other.
– There are things to consider which one is wisest to remove.
– asbDuration contains information about both, so maybe that’s best.

• That leaves us mainly with PP (pleural protein?) and PA (pleural albumin?)

– They seem to be fairly correlated with each other.
– I have no idea what is more important (maybe you would!) so I’m going to take PP

out.
– A less arbitrary option may be to try two models, one with each missing, and see

how well they fit/perform.
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18.2.3 Check after removing variables

So lets cut the variables down a bit more and check how things are doing.

Call:
glm(formula = dx ~ ., family = binomial, data = meso3)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.227e+00 1.944e+00 0.631 0.52779
age -4.656e-02 1.472e-02 -3.163 0.00156 **
gender -7.519e-01 2.735e-01 -2.749 0.00597 **
asbDuration 2.945e-02 1.059e-02 2.781 0.00541 **
symDuration 5.788e-02 2.902e-02 1.994 0.04611 *
dyspnoea -2.021e-02 3.484e-01 -0.058 0.95375
chestAche -2.540e-01 2.830e-01 -0.898 0.36939
weakness 3.429e-01 2.964e-01 1.157 0.24726
WB -1.577e-05 3.982e-05 -0.396 0.69201
WBC -6.393e-02 4.185e-02 -1.528 0.12655
HGB 3.258e-01 2.844e-01 1.146 0.25195
PLT -2.201e-03 1.140e-03 -1.931 0.05349 .
sedimentation 4.768e-03 6.457e-03 0.738 0.46024
LDH 4.156e-04 9.604e-04 0.433 0.66522
ALP -8.684e-04 4.290e-03 -0.202 0.83961
protein 7.299e-02 1.800e-01 0.405 0.68512
albumin 6.421e-02 2.442e-01 0.263 0.79262
glucose 2.416e-03 3.496e-03 0.691 0.48940
PLD -1.459e-04 3.582e-04 -0.407 0.68367
PA -2.819e-01 1.862e-01 -1.514 0.12996
PG -8.418e-03 7.333e-03 -1.148 0.25097
PE 1.416e-01 5.414e-01 0.262 0.79366
PTH 2.249e-01 3.475e-01 0.647 0.51747
PLA -7.894e-01 3.567e-01 -2.213 0.02689 *
CRP 1.226e-02 7.395e-03 1.658 0.09730 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 393.79 on 323 degrees of freedom
Residual deviance: 348.20 on 299 degrees of freedom

363



AIC: 398.2

Number of Fisher Scoring iterations: 5

age gender asbDuration symDuration dyspnoea
1.434130 1.088232 1.487264 1.129502 1.094376
chestAche weakness WB WBC HGB
1.045581 1.178690 1.115586 1.096017 1.157860

PLT sedimentation LDH ALP protein
1.858685 1.140208 1.871628 1.230647 1.306394
albumin glucose PLD PA PG
1.344529 1.098984 1.235294 1.800686 2.337586

PE PTH PLA CRP
2.122909 1.701094 1.857195 1.558289

Everything is way better in terms of VIF so that’s a good first step I’d say.
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18.3 Residual Diagnostics

18.3.1 Review

Assessing the residuals is a bit difficult here, originally it was pretty simple.

𝑒𝑖 = observed − predicted = 𝑦𝑖 − ̂𝑦𝑖

And then there are standardized residuals and studentized residuals (which get called stan-
dardized residuals because someone was sadistic).

𝑒∗
𝑖 = 𝑦𝑖 − ̂𝑦𝑖√

𝑀𝑆𝐸
or 𝑒∗

𝑖 = 𝑦𝑖 − ̂𝑦𝑖
√𝑀𝑆𝐸(1 − ℎ𝑖)

• Both have the same objective: set the residuals on the same scale no matter what model
you’re examining.

• Standardized/Studentized Residuals greater than 3 are considered outl;iers and the cor-
responding data point should be investigated.

• Studentized residuals (the right hand-side version) are calculated in such a way that they
try to account for over-fitting of the model to the data by pretending that observation
is not in the data.

• It is my impression (and opinion) that Studentized should be preferred.
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18.3.2 Residuals in GLMs

Residuals follow the same form.

𝑒𝑖 = observed − predicted = 𝑦𝑖 − ̂𝑦𝑖

The general form for a standardized residual is about the same:

𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖
𝑠( ̂𝑦𝑖)

and 𝑠( ̂𝑦𝑖) is the variability of our estimate.

• In GLMs it is often the case, 𝑠( ̂𝑦𝑖) is not constant by default, i.e., the variability of the
predictions is not constant.

• Dependent on our model, the way to calulate 𝑠( ̂𝑦𝑖) differs.
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18.3.3 Pearson Residuals

We have to account for the fact that our predictions are probabiliies in logistic regression.

̂𝑦𝑖 = 𝑃(𝑦𝑖 = 1|𝑥) = ̂𝑝𝑖(𝑥𝑖)

We are dealing with the binomial distribution so the formula for the variability of the predicted
probability is:

𝑠( ̂𝑦𝑖) = √ ̂𝑝𝑖(𝑥𝑖)(1 − ̂𝑝𝑖(𝑥𝑖))

Therefore the Pearson standardized residual is:

𝑒𝑖 = 𝑦𝑖 − ̂𝑝𝑖(𝑥𝑖)
√ ̂𝑝𝑖(𝑥𝑖)(1 − ̂𝑝𝑖(𝑥𝑖))

If you can group your predictions somehow in groups of size 𝑛𝑖, then the pearson residual is

𝑒𝑖 = 𝑦𝑖 − ̂𝑝𝑖(𝑥𝑖)
√𝑛𝑖 ̂𝑝𝑖(𝑥𝑖)(1 − ̂𝑝𝑖(𝑥𝑖))
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18.3.4 Deviance residuals

There is something called a deviance residual, for which the formula is:

𝑒∗
𝑖 = 𝑠𝑖𝑔𝑛(𝑦𝑖 − ̂𝑦𝑖)√2[𝑦𝑖 log(𝑦𝑖

̂𝑦𝑖
) + (𝑛𝑖 − 𝑦𝑖) log(𝑛𝑖 − 𝑦𝑖

𝑛𝑖 − ̂𝑦𝑖
)]

• The formula is not very illuminating unless you have deeper theoretical knowledge.
• I have seen at least one person say this is “preferred”.
• I have also seen that examining them is about the same as examining the pearson resid-

uals.
• An advantage here is that deviance residuals are universal and relate to some of the

deeper structure of GLMs.
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18.3.5 Autoplot maybe?

We can examine the residuals via autoplot and assess outliers as well..
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• Technically, these plots indicate that nothing is wrong.

– There is a lot of intuition and theory type stuff for why I can say that.
– That might be a whole more week’s worth of material, but we are cutting here.
– Consider it a self study topic.
– Hopefully, I’ve given enough of a seed of information for you to teach yourself more

in depth modeling.
– If you want to be good, the learning never ends.

Anyway, on to the plots.

• Top-left may not be familiar since our observed values are either zero or one.
• QQ plot looks weird because there is not a normal distribution to expect, necessarily.
• Cook’s distance is at least familiar.

– 0.5 denotes a potentially problematic value.
– 1 is the cutoff for an extreme outlier.
– Some people say 4/n is a good cutoff… I have found no reason to back that up so

far.

• Honestly I am still at a loss for how useful examination of the plots can be. GLMs can
really mess with traditional methods.
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18.3.6 DHARMa package for plotting residuals.

An experimental way of examining the residuals is availbale via the DHARMa package.

Florian Hartig (2021). DHARMa: Residual Diagnostics for Hierarchical (Multi-
Level / Mixed) Regression Models. R package version 0.4.1. https://CRAN.R-
project.org/package=DHARMa

• It tries to streamline the process and make it easier for non-experts to examine residuals
via simulation.

• There are only a couple of functions you need to know.

– simulateResiduals(model) which is stored as a variable.
– plot(simRes) where simRes is the simulated residuals output variable.

• Because it runs simulations (repeated calculations), it may take a while to finish.
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Notice the output basically tells you what may or may not be wrong. It’s as simple as that.

• The QQ Plot is NOT for normality.

– BUT you still want to check if they follow a straight line.
– The KS Test p-value is for the test of whether the data are following the correct

distribution or not.
– Small p-values mean there are problems with your model.
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• Here everything seems ideal.

– The QQ-Plot is a nearly straight line.
– The residual plot on the right follows the pattern we’d want. Everything is centered

at 0 and the spread is consistent.

• I cannot 100% recommend that this is all that you rely on, I am merely proposing a tool
to get an overview of the situation.

• In reality there are a LOT of nuances to what’s going on, so be wary.
• As far as the relative simplicity of the models we look at, my guess is that this is fine to

use.

18.4 Marginal Effects

If you haven’t picked up on it yet, interpreting the logit link model is rather hard in comparison
to a “normal” linear regression model.

On top of reporting the model coefficients, we should probably report the marginal effects as
well.

The marginal effects are, in their most basic forms, calculations derived from the model not
represented by the coefficients alone.

They take many forms.

18.4.1 What are marginal effects

Suggested Read: https://www.andrewheiss.com/blog/2022/05/20/marginalia/

Statistics is all about lines, and lines have slopes, or derivatives. These slopes
represent the marginal changes in an outcome. As you move an indepen-
dent/explanatory variabl, what happens to the dependent/outcome variable?

Think back to the last unit where we calculated the “marginal means” from the ANOVA using
the emmeans R package. These were important because sometimes they are not equal to the
summary statistics.

• Marginal effect: the statistical effect for continuous explanatory variables; the partial
derivative of a variable in a regression model; the effect of a single slider

• Conditional effect or group contrast: the statistical effect for categorical explanatory
variables; the difference in means when a condition is on vs. when it is off; the effect of
a single switch

• Average marginal effect vs Marginal effect at the Mean

371



Characteristic OR1 95% CI1 p-value
tx
    tPA — —
    SK 1.24 1.12, 1.37 <0.001
age 1.07 1.07, 1.08 <0.001
Killip Class
    I — —
    II 2.10 1.88, 2.35 <0.001
    III 4.70 3.73, 5.89 <0.001
    IV 20.8 15.6, 27.8 <0.001
Previous MI
    no — —
    yes 1.71 1.54, 1.91 <0.001
MI Location
    Inferior — —
    Other 1.36 1.04, 1.75 0.020
    Anterior 1.78 1.62, 1.96 <0.001
Sex
    male — —
    female 1.41 1.27, 1.56 <0.001
1OR = Odds Ratio, CI = Confidence Interval

– It matters a lot outside of normal linear regression

18.4.2 Example Data (real study)

So why do you need to know about this: interpretation.

Let’s use an example from the GUSTO study.

Let’s load the packages and study data.

So we have an effect… but what does an odds ratio really mean? Is it big or small?

Using the marginal means, we can calculate the risk difference instead which is adjusted for
the covariates. The treatment effect on this scale will vary based on the covariate values.

We can then calculate the average treatment effect on the probability (response scale) with
the following:
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Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.0119 0.00281 4.24 <0.001 15.5 0.00641 0.0174

Term: tx
Type: response
Comparison: mean(SK) - mean(tPA)
Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted

This study, with this model, shows roughly at 1.11% reduction in risk.

We could also talk about risk in terms of relative effect. These are called risk ratios:

Estimate Pr(>|z|) S 2.5 % 97.5 %
1.19 <0.001 14.7 1.1 1.3

Term: tx
Type: response
Comparison: ln(mean(SK) / mean(tPA))
Columns: term, contrast, estimate, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted

Shows about a 1.18 times higher risk in the SK treatment group.

18.4.3 Average Effect at the Mean

This is what you get in most software.

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % age Killip pmi miloc
0.00506 0.0012 4.22 <0.001 15.4 0.00271 0.0074 60.9 I no Inferior
sex
male

Term: tx
Type: response
Comparison: SK - tPA
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, tx, age, Killip, pmi, miloc, sex, day30

UH OH! The effect is substantially very small compared to the average effect. Why? This is
for a data point that doesn’t exist!
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18.4.4 Individual level summary

Again, the effect varies on individual level based on the effect of other covariates. This is more
extreme when the base probability is very low (rare event).
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18.4.5 What about continuous variables?

We can look at the slopes.

Let’s look at age!

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.00406 0.000149 27.3 <0.001 543.6 0.00377 0.00435

Term: age
Type: response
Comparison: mean(dY/dX)
Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted

So approximately at .4% increase in risk per year increase in age

Let’s plot this to see what it looks like.

374



0.0

0.2

0.4

30 60 90
age

da
y3

0

That doesn’t look linear…. Why? We model the log odds not the probability directly.

We can look at all the individual level slopes as well.

0

500

1000

0.000 0.005 0.010 0.015
Age

co
un

t

Distribution of unit−level contrasts

375



References

Balka, Jeremy. n.d. “Making Statistics Make Sense.” JB Statistics. https://www.jbstatistics.
com/.

376

https://www.jbstatistics.com/
https://www.jbstatistics.com/

	Preface
	Review of Introductory Inference
	Review: Inference
	General Idea of Inference
	Populations and Parameters: Means and Standard Deviations
	Estimating The Mean and Standard Deviation

	Central Limit Theorem, Standard Errors, and Uncertainty
	Standard Error
	Central Limit Theorem

	Confidence Intervals for the Mean
	General Form for Confidence Intervals

	Hypothesies Tests
	Review Videos (courtesy of JB Statistics and Crash Course)
	Probability Distributions
	Sampling Distributions and the Central Limit Theorem (CLT)
	Confidence Intervals
	Hypothesis Tests


	Data and Models
	Data
	Variables and Observations
	Heart data introduction
	Heart Disease Data Dictionary

	Mathematical Models
	input and output
	Mathematical models
	Heart Model

	Statistical models and Error
	Heart example
	Conditional Means vs Unconditional Means

	Linear models
	Simple linear models: one predictor variable.
	Linear models with more than one predictor variable


	Measuring Association
	Getting Started
	Linear Correlation
	Correlation Strength Examples
	Linear correlation of the heart data
	Correlation does not imply causation
	cOrReLlAtIoN dOeS nOt ImPlY cAuSaTiOn

	Non-linear correlation
	True Pressure Equation
	Using the Equation
	Using Transformations

	Zero Linear Relation Examples
	Circle
	Sine Wave
	Quadratic

	Kendall's \tau: A Correlation that identifies certain non-linear
	Alternative Expression for Kendall's \tau
	Kendall's \tau with the pressure data
	Kendall's \tau on some mice proteins data
	A transformation


	Simple Linear Regression
	Statistical Models
	The Linear Regression Model
	Comparing the Real to the Ideal

	Least Squares Regression Line
	Measuring Error
	OLS solution (You can ignore this if you want.)
	Now you ``know'' the theory, lets look at what we do.
	Interpreting Coefficients
	Prediction Using The Line
	Predict Function in R

	Statistcal Inference in Linear Regression
	Example
	Tests for the Line Coefficients
	Confidence Intervals


	Inference on the Regression Line
	Uncertainty in the Model
	Partitioning Variability
	Sums of Squares
	Coefficient of Determination R^2

	Analysis of Variance (ANOVA) in Regression
	Degrees of Freedom
	Mean Squares and the Test Statistic
	F-Distribution
	ANOVA Table
	Regression ANOVA in R

	Model Error: \sigma_\epsilon
	Standard Error of \hat \beta_1 and \widehat \beta_0
	Standard Error for the Line
	Confidence Intervals for the Mean
	Prediction Intervals for Future Observations
	Getting Confidence and Prediction Intervals in R
	Graph of Confidence Intervals and Prediction Intervals
	Important Note: Confidence Levels and Their Reliability.

	Working-Hotelling Confidence:
	Working-Hotelling Confidence Bands
	Working-Hotelling Prediction Bands Bands
	Getting These in R


	Residual Diagnostics
	Validating the Model and Statistical Inference: The Residuals
	Residuals
	Checking Normality
	QQ-Plots (QQ stands for QuantileQuantile)
	Hypothesis Tests for Normality

	Residual Plots for Assessing Bias and Variance Homogeneity
	Premise of Residual Plots
	Good Residual Plots
	Bad Residual Plots

	Outliers
	Alternative Way to Get Residual Diagnostics Graphs
	Getting Outliers from the Data.
	New Model Without O'Doul's

	Specifics of Residual Plots in Simple Linear Regression
	Fitted versus Observed
	General Model Checks


	Transformations
	Not all relations are linear
	Correlations
	Residuals
	Transformations for Non-linear Relationships
	Applying a transformation to the cars dataset

	``Stabilizing'' Variability
	Log of cars data

	You've got a linear model, now what
	Interpreting you coefficients
	Predictions from transformations


	Introduction to Multiple Regression
	SENIC Data
	Infection Risk
	Relation of infectionRisk with stayLength and cultureRatio
	Model with stayLength
	Model with cultureRatio

	Linear Regression with Two Variables
	Model for infectionRisk using two variables
	Graphing the relationship
	Interpreting the Coefficients

	Inference on the regression coefficients
	Confidence Intervals for Coefficients

	Estimating the Mean/Predicting Future Observations
	Confidence Intervals for the Mean and Prediction Intervals for Future Observations

	Residual Analysis
	Adding more variables!
	facilities and infectionRisk?
	Adding facilities to the infectionRisk model.
	Remember to always check your residuals!
	The Model Analysis of Variance: Global F-Test
	F-Test for infectionRisk model with 3 predictors
	Experiment: What happens to the stayLength slope?

	Transformations
	Finding the right transformations
	Incorporating them into the model
	Residuals!
	Which log?
	Can you spot the difference in residuals?


	Variable Selection, Data Reduction, and Model Comparison
	Explainable statistical learning in public health for policy development: the case of real-world suicide data
	Variables. A LOT!

	How do we choose variables?
	The scope of the problem
	Just use the best correlations?

	Multicollinearity
	But what about self harm and looking after children?

	Measuring multi-collinearity
	A linear model for the predictors
	Tolerance
	Variance Inflation Factors
	Getting TOL or VIF: performance package
	Plot check_collinearity checks
	VIF and Tolerance in the full model
	Detecting Multicollinearity

	Variable screening the PHE data
	Next step: Choosing an actual model
	Methods for model assessment
	Just ``significant'' variables?
	R^2? (Don't use it to choose models).
	Adjusted R^2 (More conservative)
	Predicted R^2 (Even more conservative)
	Akaike Information Criterion AIC

	Variable Selection Methods: Problems and Pitfalls
	Major Problems with Stepwise Selection
	Example: House Price Prediction
	Better Alternatives
	Key Takeaways


	Prespecification of Predictor Complexity in Statistical Modeling
	I. Introduction to Linear Relationships
	Problems with Post-Hoc Simplification
	Common but Problematic Approaches:
	Key Issue:

	The Prespecification Approach
	Core Principles:
	Benefits:

	Practical Implementation
	Guidelines for Complexity:
	Examples of Implementation:

	Validation and Testing
	Allowed Practices:
	Important Rule:

	The Directional Principle
	Key Concepts:

	Importance and Impact
	Benefits of Prespecification:
	Trade-offs:

	Summary
	Sample Size Requirements & Overfitting in Regression Models
	Definition
	The m/15 Rule
	Counting Parameters
	Special Considerations
	Practical Example
	Alternative Approaches
	Sample Size for Variance Estimation
	Key Takeaways
	Practice Problems

	Shrinkage in Statistical Models: Understanding the Basics
	Introduction
	What is Shrinkage?
	Example
	Key Shrinkage Methods
	Benefits of Shrinkage
	Key Takeaway

	Data Reduction Methods
	Definition
	Purpose
	Redundancy Analysis
	Variable Clustering
	Variable Transformation and Scaling
	Simple Scoring of Variable Clusters

	Implementation Guidelines
	Best Practices
	Recommended Workflow

	Key Considerations
	Advantages
	Limitations

	Discussion Points
	Critical Questions
	Implementation Challenges
	Remarks

	Data Reduction Techniques Examples
	1. Redundancy Analysis
	2. Variable Clustering
	3. Principal Components Analysis
	4. Sparse Principal Components Analysis
	Put it all together
	Analysis Summary
	Recommendations for Data Reduction


	Outliers and Influential Observations
	Explainable statistical learning in public health for policy development: the case of real-world suicide data
	Variables. A LOT!

	We have a model!
	Leverage and Influence
	Low/High leverage versus Low/High Influence

	Finding High Influence Points
	DFFITS
	Cook's Distance (D)
	DFBETAS
	Custom Functions: Influential Observations calculator
	Influence Measures on PHE data
	Plotting the Residuals, Cook's Distance and Leverage

	You found some values that are high influence outliers, now what?
	Removing 26
	Does stepwise
	Removing the other outlier

	Which model to use
	Our model building process

	One-Way ANOVA
	Review: Comparing Two Groups (Sections 7.1 - 7.7 of JB Statistics)
	The two-sample t-test: Pooled
	Welch's two-sample t-test
	R command, t.test()
	Hypothetical Example: Three Groups

	Analysis of Variance
	General Objective of Analysis of Variance (ANOVA)
	Familywise Error Rate: What happens when you do multiple hypothesis tests
	How ANOVA Works
	Treatment versus Error Variability Demos

	Formulating ANOVA: Notation
	Sums of Squares
	Mean Squares
	Test Statistic
	F-Distribution
	F-Distribution Visualization

	How is this a ``Linear Model''
	Means Model
	Effects Model

	OASIS MRIs
	Examining the data
	ANOVA in R: its lm() again
	Alternative: aov()
	Statistical Versus Practical Significance


	Multiple Comparisons
	Multiple testing problem
	The Bonferroni method
	Example 1, OASIS data
	Example, Genomics

	Tukey's HSD (Tukey's Honestly Significant Difference)
	Tukey in R

	FDR and the Benjamani-Hochberg procedure
	Controlling the FDR: Benjamani-Hochberg Procedure
	Other Procedures for Controlling FDR


	ANOVA Assumptions
	Notation Reminder
	Assumptions
	Checking them is about the same! autoplot()
	Testing for Constant Variability/Homoskedasticity: Levene's Test and Brown-Forsythe Test
	Levene/Brown-Forsythe in R
	Oasis Example

	What if the assumptions are violated?
	Games-Howell Procedure

	Some Extra Remarks
	One Final Note: Sample Sizes


	Balanced (Uniform Sample Size) Two-Way ANOVA
	Pseudo-Example
	Sample Sizes in Two-Way ANOVA

	Notation and jargon
	Two way ANOVA Model
	Estimating model parameters (Means model)
	Estimating model parameters (Effects model)

	Hypothesis Tests
	Main Effects Tests
	Interaction Test
	Sums of Squares, Mean Squares, and Test Statistics
	And so there is a Two-Way ANOVA table (surprise)

	Study: Compulsive Checking and Mood
	Examining the data
	Performing two-way ANOVA

	Post-hoc Comparisons: Estimated Marginal Means
	Using the emmeans() function to get marginal or cell means
	Getting pairwise comparisons

	Diagnostics

	Unbalanced Two-Factor Analysis of Variance
	Two way ANOVA Model
	Notation and jargon
	Sums of Squares in Unbalanced Designs
	The Forsest of Sums of Squares
	Hypothesis Tests
	Type I Tests
	Type II Tests
	Type III Tests
	Which tests to use?
	PAY ATTENTION TO WHAT THE SOFTWARE DOES

	Patient Satisifcation Data
	Looking at the sample sizes for the cells
	Graphing the data! (DO IT!)
	Type II ANOVA
	Type III ANOVA
	Multiple Comparisons
	Main Effect Comparisons
	One Way to Look at Interactions: AffCom by Worry Levels
	Or Maybe: Worry by AffCom Levels
	Another way: All Pairwise Comparison (Throw everything at the wall and see what sticks)


	Generalized Linear Models
	Components of Linear Model
	Introduction to Link Functions
	Form of Generalized Linear Models
	Various Types of GLMs

	Classification Problems, In General.
	Odds and log-odds

	An Example, Default
	A little bit of EDA
	Logistic Regression
	Plotting
	Why Not Linear Regression
	Plotting the Logistic Regression Curve

	The Logistic Model in GLM
	Estimating The Coefficients: glm function
	GLM Function on Default Data
	Default Predictions

	Interpreting coefficients
	Predict Function for GLMS
	Using predict on Default Data
	Classifying Predictions
	Assessing Model Accuracy

	Categorical Predictors
	Multiple Predictors
	Multiple Predictors in Default Data


	Logistic Regression Diagnostics and Model Selection
	Data: Do you have mesothelioma? If so call <ATTORNEY> at <PHONE NUMBER> now.
	Data description

	Model Selection
	Step one: Assess your goal and how you get there.
	Variance Inflaction Factors are still here
	Check after removing variables

	Residual Diagnostics
	Review
	Residuals in GLMs
	Pearson Residuals
	Deviance residuals
	Autoplot maybe?
	DHARMa package for plotting residuals.

	Marginal Effects
	What are marginal effects
	Example Data (real study)
	Average Effect at the Mean
	Individual level summary
	What about continuous variables?


	References

